Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction

Author(s):  
Junhui Zhang ◽  
Junhui Peng ◽  
Weizheng Liu ◽  
Weihua Lu
Author(s):  
Shu-Rong Yang ◽  
Wei-Hsing Huang ◽  
Yu-Tsung Tai

The variations of resilient modulus with the postconstruction moisture content and soil suction for cohesive subgrade soils were evaluated. In particular, the effects of relative compaction of the subgrade on the suction and resilient modulus were investigated. To simulate subgrade soils at in-service conditions, soil specimens were compacted at various relative compactions and optimum moisture content and then saturated to equilibrium moisture content to test for resilient modulus and soil suction. The filter paper method was used to measure the total and matric suctions of two cohesive soils. Test findings demonstrated that resilient modulus correlated better with the matric suction than with total suction. Matric suction was found to be a key parameter for predicting the resilient modulus of cohesive subgrade soils. A prediction model incorporating deviator stress and matric suction for subgrade soil resilient modulus was established.


2015 ◽  
Vol 52 (10) ◽  
pp. 1605-1619 ◽  
Author(s):  
Zhong Han ◽  
Sai K. Vanapalli

Soil suction (ψ) is one of the key factors that influence the resilient modulus (MR) of pavement subgrade soils. There are several models available in the literature for predicting the MR–ψ correlations. However, the various model parameters required in the existing models are generally determined by performing regression analysis on extensive experimental data of the MR–ψ relationships, which are cumbersome, expensive, and time-consuming to obtain. In this paper, a model is proposed to predict the variation of the MR with respect to the ψ for compacted fine-grained subgrade soils. The information of (i) the MR values at optimum moisture content condition (MROPT) and saturation condition (MRSAT), which are typically determined for use in pavement design practice; (ii) the ψ values at optimum moisture content condition (ψOPT); and (iii) the soil-water characteristic curve (SWCC) is required for using this model. The proposed model is validated by providing comparisons between the measured and predicted MR–ψ relationships for 11 different compacted fine-grained subgrade soils that were tested following various protocols (a total of 16 sets of data, including 210 testing results). The proposed model was found to be suitable for predicting the variation of the MR with respect to the ψ for all the subgrade soils using a single-valued model parameter ξ, which was found to be equal to 2.0. The proposed model is promising for use in practice, as it only requires conventional soil properties and alleviates the need for experimental determination of the MR–ψ relationships.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuanxuan Chu

Considering the great contribution of subgrade modulus to the overall performance of roads or railways, it is crucial to provide the best prediction of resilient modulus for their foundations. Incorporating the seasonal variation of moisture content, the resilient modulus variation of unsaturated soils will be accurately predicted. This paper aims to introduce and discuss the knowledge about resilient response of unsaturated soils and emphasize the effects of humidity. A literature review on resilient response of unsaturated soils is presented based on the previous studies. The affecting factors (i.e., wetting and drying, moisture content, and matric suction) were discussed. The prediction model development of the resilient response of unsaturated soils was presented. The limitations and advantages of the model were analyzed and compared. It reveals that the current models were limited regarding stress conditions, moisture content, matric suction, and soil types, and further studies are still needed to achieve a better understanding of resilient response of unsaturated soils.


Author(s):  
Auckpath Sawangsuriya ◽  
Tuncer B. Edil ◽  
Craig H. Benson

2014 ◽  
pp. 1145-1154
Author(s):  
Farhad Salour ◽  
Sigurdur Erlingsson ◽  
Claudia Zapata

Sign in / Sign up

Export Citation Format

Share Document