Chemical, Microstructural, and Rheological Characterizations of Binders to Evaluate Aging and Rejuvenation

Author(s):  
Patrícia Hennig Osmari ◽  
Francisco Thiago Sacramento Aragão ◽  
Leni Figueiredo Mathias Leite ◽  
Renata Antoun Simão ◽  
Laura Maria Goretti da Motta ◽  
...  

This study evaluated the effects of the commercial product, AR 5, and two alternative products, waste cooking oil and castor oil, in the rejuvenation process of two asphalt binders. The analyses were carried out on microscopic and macroscopic scales on virgin, aged, and rejuvenated binders. Tests in a dynamic shear rheometer were performed to characterize rheological properties of the binders. Then, an atomic force microscope was used to identify microstructural changes in the materials. A digital image analysis technique enabled the quantification of key variables such as area fraction and spatial and size distributions of the binder constituents. Finally, the following chemical tests were performed to identify changes in the chemical composition of the binders resulting from the aging and rejuvenation processes: SARA (which measures saturates, asphaltenes, resins, and aromatics), gel permeation chromatography, and nuclear magnetic resonance. The results obtained from the tests were further compared to identify correlations between the properties evaluated in different scales. The results demonstrated the efficiency and potential of the rejuvenators evaluated in this study. The results also highlighted the importance of the use of advanced techniques to characterize and understand the material aging and rejuvenation processes.

Author(s):  
Mahrzadi Noureen Shahi ◽  
Muhammad Arshad ◽  
Aman Ullah

Solvent free copolymerization of epoxides derived from fatty acid esters of waste cooking oil with phthalic anhydride using (salen)CrIII Cl as catalyst and n-Bu4NCl/DMAP as co-catalyst was carried out for the first time under microwave irradiation, where reaction time was reduced from number of hours to minutes. The polyesters were obtained with molecular weight (Mw = 3084-6740 g/mol) and dispersity values (D = 1.18-1.92), when (salen)CrIII Cl/n-Bu4NCl was used as catalysts. While in case of DMAP as a co-catalyst, polyesters with improved molecular weight (Mw = 5537-6925 g/mol) and narrow dispersity values (D = 1.07-1.28) were obtained even at reduced concentrations of (salen)CrIII Cl and DMAP. The obtained products were characterized and evaluated by attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance (1H-NMR) spectroscopy, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) Techniques.


Sign in / Sign up

Export Citation Format

Share Document