scholarly journals Comparison of flower bud development in almond, apricot and peach genotypes

Author(s):  
L. Szalay

The phenological processes of flower bud development of stone fruits during dormancy are not thoroughly known. The yield of these species, especially of almond, apricot and peach is determined basically by dormancy of flower buds, the survival rate of buds during winter frosts and by their ability to develop normal floral organs in the next spring. After the initiation of floral primordia, flower bud development is taking place in continuous space until blooming, though at different speed characteristic to the species. To study flower bud development during dormancy we applied two alternative methods in different genotypes of almond, apricot and peach: (1) examination of pollen development (microsporogenesis), and (2) the measurement of pistil length. The samples were collected from the central part of Hungary during the dormancy period of 2004/2005. The three fruit species differed significantly in the speed of flower bud development, it was the quickest in almond, followed by apricot and peach. In addition to the species, there were significant differences in the process of microsporogenesis and pistil development between genotypes within species and also between the different types of shoots on which the buds were located. On short shoots buds developed at a higher speed, than on long shoots. Based on our observations, on the short shoots the period of endodormancy was shorter with 5-30 days, according to genotypes, compared to the long shoots. This difference, however, decreased to 2-3 days by the time of blooming.

2018 ◽  
Vol 9 ◽  
Author(s):  
Kai Zhao ◽  
Yuzhen Zhou ◽  
Sagheer Ahmad ◽  
Zongda Xu ◽  
Yushu Li ◽  
...  

2018 ◽  
Vol 70 (3) ◽  
pp. 937-948 ◽  
Author(s):  
Faline D M Plantenga ◽  
Sara Bergonzi ◽  
José A Abelenda ◽  
Christian W B Bachem ◽  
Richard G F Visser ◽  
...  

1998 ◽  
Vol 123 (4) ◽  
pp. 586-591 ◽  
Author(s):  
Kiyoshi Ohkawa ◽  
Hyeon-Hye Kim ◽  
Emiko Nitta ◽  
Yukinori Fukazawa

Leucocoryne, a native to Chile, has violet, blue, or white flowers and is increasing in popularity as a cut flower. The effects of storage temperature and duration on flower bud development, shoot emergence, and anthesis were investigated. Bulbs stored at 20 to 30 °C for 22 weeks produced 3.4 flower stems per bulb between March and April. Bulbs stored at 20 °C flowered earliest, followed by those stored at 25 °C. Bulbs stored at 30 °C flowered last. After 16 weeks of storage at 20 °C, a further 2 weeks dry storage at 15 °C before planting resulted in 1 month earlier flowering with no reduction of the number of flowering stems. As dry storage at 20 °C increased to 11 months, the time to emergence and flowering decreased. After dry storage at 20 °C for 12 months, the primary flower stems aborted and secondary stems then developed. Secondary and tertiary flower stems tend to commence flower bud development after the flower bud on the primary flower stem has reached the gynoecium or anther and ovule stage of initiation.


1999 ◽  
Vol 77 (2) ◽  
pp. 262-268
Author(s):  
Michael J Sumner ◽  
William R Remphrey ◽  
Richard Martin

A relationship was developed between phenological stages of inflorescence expansion and the internal development of pollen within the anther of Amelanchier alnifolia Nutt. flowers. The major microscopic events associated with microsporogenesis and microgametogenesis were correlated with seven stages of external inflorescence development in both natural buds and those forced from dormancy in different concentrations of gibberellin at various times of the year. In fall and early spring, it was found that gibberellin at a concentration of 2.5 mg/L forced buds to produce inflorescences that most resembled those from natural field populations. However, it was not possible to force flower buds to develop all the way to anthesis. Flower bud development stopped when the pollen was at the binucleate stage. Despite this limitation, the ability to force buds increases the time frame for the study of many aspects of the reproductive biology of A. alnifolia.Key words: microsporogenesis, microgametogenesis, gibberellin, GA, flowering.


Sign in / Sign up

Export Citation Format

Share Document