scholarly journals HIGH HEAT FLUX EVAPORATIVE NANOPOROUS SILICON MEMBRANE DEVICE FOR ADVANCED THERMAL MANAGEMENT

Author(s):  
D.F. Hanks ◽  
J. Sircar ◽  
Z. Lu ◽  
D.S. Antao ◽  
K.R. Bagnall ◽  
...  
Author(s):  
Ihtesham Chowdhury ◽  
Ravi Prasher ◽  
Kelly Lofgreen ◽  
Sridhar Narasimhan ◽  
Ravi Mahajan ◽  
...  

We have recently reported the first ever demonstration of active cooling of hot-spots of >1 kW/cm2 in a packaged electronic chip using thin-film superlattice thermoelectric cooler (TEC) cooling technology [1]. In this paper, we provide a detailed account of both experimental and theoretical aspects of this technological demonstration and progress. We have achieved cooling of as much as 15°C at a location on the chip where the heat-flux is as high as ∼1300 W/cm2, with the help of a thin-film TEC integrated into the package. To our knowledge, this is the first demonstration of high heat-flux cooling with a thin-film thermoelectric device made from superlattices when it is fully integrated into a usable electronic package. Our results, which validate the concept of site-specific micro-scale cooling of electronics in general, will have significant potential for thermal management of future generations of microprocessors. Similar active thermal management could also be relevant for high-performance solid-state lasers and power electronic chips.


2001 ◽  
Vol 25 (5) ◽  
pp. 231-242 ◽  
Author(s):  
Cristina H. Amon ◽  
Jayathi Murthy ◽  
S.C. Yao ◽  
Sreekant Narumanchi ◽  
Chi-Fu Wu ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 89 ◽  
Author(s):  
Zhibin Yan ◽  
Mingliang Jin ◽  
Zhengguang Li ◽  
Guofu Zhou ◽  
Lingling Shui

Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temperature distribution in confined spaces for high performance electronic devices. In this paper, we review the state-of-the-art droplet-based microfluidic cooling methods in the literature, including the basic theory of electrocapillarity, cooling applications of continuous electrowetting (CEW), electrowetting (EW) and electrowetting-on-dielectric (EWOD), and jumping droplet microfluidic liquid handling methods. The droplet-based microfluidic cooling methods have shown an attractive capability of microscale liquid manipulation and a relatively high heat flux removal for hot spots. Recommendations are made for further research to develop advanced liquid coolant materials and the optimization of system operation parameters.


Sign in / Sign up

Export Citation Format

Share Document