scholarly journals ELECTROHYDRODYNAMIC JET PRINTING: A 3D PRINTING TECHNIQUE FOR SENSOR FABRICATION

Author(s):  
C.P. Pannier ◽  
Z. Wang ◽  
D.J. Hoelzle ◽  
K.L. Barton
Author(s):  
Lei Qian ◽  
Hongbo Lan ◽  
Guangming Zhang ◽  
Jiawei Zhao ◽  
Shuting Zou

This paper presents an electric-field-driven (EFD) jet deposition 3D printing technique, which is based on the induced electric field and electrohydrodynamic (EHD) cone-jetting behavior. Unlike the traditional EHD-jet printing with two counter electrodes, the EFD jet 3D printing only requires a nozzle electrode to induce an electric field between the nozzle and the target substrate. Taking into account both printing accuracy and printing efficiency, two novel working modes which involve pulsed cone-jet mode and continuous cone-jet mode, are proposed for implementing multi-scale 3D printing. In this work, significant relationships between the printing results and process parameters (voltage, air pressure, pulse duration time, and stage velocity) were investigated to guide the reliable printing in both working modes. Furthermore, the experimental studies were carried out to demonstrate the capabilities and advantages of the proposed approach, which included the suitability of various substrate, the capacity of conformal printing, and the diversity of the compatible materials. Finally, four typical printing results were provided to demonstrate the feasibility and effectiveness of the proposed technology for micro-scale 2D patterning and macro/microstructures multi-scale fabrication. As a result, this research provides a novel micro-scale 3D printing technique with low cost, high resolution and good generalizability. The breakthrough technique paves a way for implementing highresolution 3D printing, especially for multi-scale and multimaterial additive manufacturing.


ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12012-12017 ◽  
Author(s):  
Elmeri Lahtinen ◽  
Lotta Turunen ◽  
Mikko M. Hänninen ◽  
Kalle Kolari ◽  
Heikki M. Tuononen ◽  
...  

Author(s):  
Anna Rokicińska ◽  
Marek Drozdek ◽  
Elżbieta Bogdan ◽  
Adam Węgrzynowicz ◽  
Piotr Michorczyk ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chang-Il Kwon ◽  
Yeonsun Shin ◽  
Jaeok Hong ◽  
Minje Im ◽  
Guk Bae Kim ◽  
...  

2020 ◽  
Vol 7 (4) ◽  
pp. 1083-1090 ◽  
Author(s):  
Danwei Zhang ◽  
Win Jonhson ◽  
Tun Seng Herng ◽  
Yong Quan Ang ◽  
Lin Yang ◽  
...  

A universal 3D printing technique for metals, ceramics and multi-materials with complex geometries for resultant dense high-quality structures.


2019 ◽  
Vol 822 ◽  
pp. 277-283
Author(s):  
Mariia Stepanova ◽  
Aleksei Eremin ◽  
Ilia Averianov ◽  
Iosif Gofman ◽  
Antonina Lavrentieva ◽  
...  

Supermacroporous three-dimensional matrices based on poly-D,L-lactide or polycaprolactone were fabricated by thermally induced phase separation method and 3D printing technique. The morphology and mechanical properties of the resulting matrices were studied with the use of optical and scanning electron microscopy and the uniaxial compression test, respectively. All matrices were characterized with supermacroporous structure suitable for cell penetration. A significant increase in Young's modulus and tensile strength was established for both polymer matrices prepared by 3D printing technique.


Sign in / Sign up

Export Citation Format

Share Document