uniaxial compression test
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 123)

H-INDEX

12
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xing-Chao Lin ◽  
Qiang Zhang ◽  
Jiufeng Jin ◽  
Guangming Chen ◽  
Jin-Hang Li

On the basis of the numerical manifold method, this work introduces the concept of stress intensity factor at the crack tip in fracture mechanics and proposes the utilisation of artificial joint technology to ensure the accuracy of joint geometric dimensions in the element generation of the numerical manifold method. The contour integral method is used to solve the stress intensity factor at the joint tip, and the failure criterion and direction of crack propagation at the joint tip are determined. Element reconstruction and crack tracking are implemented in crack propagation, and a simulation programme of the entire process of deformation, failure, propagation and coalescence of jointed rock masses is developed. The rationality of the proposed method is verified by performing the typical uniaxial compression test and direct shear test.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 438
Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This study provides a contribution to the research field of 3D-printed earthen buildings, focusing, for the first time, on the load-bearing capacity of these structures. The study involves the entire production and testing process of the earthen elements, from the design, to the preparation of the mixture and the 3D printing, up to the uniaxial compression test on a wall segment. The results indicate that 3D-printed earthen elements have a compressive strength of 2.32 MPa, comparable to that of rammed earth structures. The experimental data also made it possible to draw conclusions on the action of the infill, which seems to have the function of stopping the propagation of cracks. This has a positive effect on the overall behavior of 3D-printed earthen elements, since it avoids the onset of dilative behavior in the final stages of the load test and maintains ultimate load values higher than 50% of the maximum load.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This study provides a contribution to the research field of 3D printed earthen buildings, focusing, for the first time, on the load-bearing capacity of these structures. The study involves the entire production and testing process of the earthen elements, from design, to the preparation of the mixture and the 3D printing, up to the uniaxial compression test on a wall segment. The results indicate that 3D printed earthen elements have a compressive strength of 2.32 MPa, comparable to that of rammed earth structures. The experimental data also made it possible to draw conclusions on the action of the infill, which seems to have the function of stopping the propagation of cracks. This has a positive effect on the overall behavior of 3D printed earthen elements, since it avoids the onset of dilative behavior in the final stages of the load test and maintains ultimate load values higher than 50% of the maximum load.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 5) ◽  
Author(s):  
Hanqing Yang ◽  
Xuezhen Wu ◽  
Hongwen Jing ◽  
Liyuan Yu ◽  
Richeng Liu

Abstract Deep geothermal energy is of great strategic importance for the development of the energy industry. In the process of geothermal energy extraction, temperature changes will significantly affect the physical and mechanical properties of the rock mass. To investigate the influence of temperature on the physical and mechanical properties of red sandstones and marbles, the uniaxial compression test, variable-angle shear test, mercury intrusion porosimetry (MIP) test, and SEM test were conducted on the red sandstone and marble specimens treated by 9 temperature levels (from 25°C to 800°C). The results show that the porosity is positively correlated with the temperature regardless of rock types. The peak strength of red sandstones during uniaxial compression increases first when temperature increases from 25°C to 400°C and then decreases when temperature increases from 400°C to 800°C, whereas the peak strength of marbles exhibits a first decreasing (from 25°C to 300°C), then increasing (from 300°C to 600°C) and finally decreasing (from 600°C to 800°C) trend. Similarly, the shear strength and cohesion of red sandstones increase first and then decrease as temperature rises from 25°C to 800°C, despite of the predesigned shearing angle, which is opposite to the variation in frictional angle. The variations in physical and mechanical behavior are closely related to the expansion of the constituent grains or groundmass which make up the rock composition and closure of pores. Additionally, the temperature in the range from 400°C to 600°C plays an important role to evaluate the variations in the physical and mechanical characteristics of red sandstones and marbles after high-temperature exposure, because of the stress, strain, and porosity change dramatically.


2021 ◽  
pp. 255-264
Author(s):  
Xin Du ◽  
Cailing Liu ◽  
Meng Jiang ◽  
Hao Yuan ◽  
Lei Dai ◽  
...  

In this paper, the ultimate crushing displacement and ultimate crushing load of the coated fertilizer granules were obtained by uniaxial compression test as 0.450 mm and 58.668 N, respectively. Then the DEM model of the encapsulated fertilizer was established, and the Plackett-Burman and Steepest ascent tests were taken to determine the factors that had significant effects on the results and their ranges of values, respectively. Finally, the PSO_BP neural network was trained using full-factor test data, and the correlation coefficients of training process, validation process, testing process and overall performance were obtained as 0.98057, 0.95781, 0.96724 and 0.97459, respectively, indicating that the trained PSO_BP neural network fits well and can predict the ultimate crushing displacement and ultimate crushing load. The ultimate crushing displacement Y1 and ultimate crushing load Y2 are 0.450 mm and 58.703 N, with a minimum relative error of 0.06% from the actual value. This study can provide new methods and ideas for the calibration of discrete element simulation parameters.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of the research on 3D printing of earthen housing modules, made with earth taken in situ. Previous studies have already led to the definition of 3D printed earthen elements for the external cladding of single-story wooden load-bearing structures. With this work, we intend to take a step forward in the use of 3D printed earthen elements, studying their load-bearing capacity for vertical loads. The goal is to create load-bearing structures entirely in earth, with two or more floors. To this end, the present work investigates two of the major presumed criticalities of 3D printed elements under vertical load, namely the detachments due to poor cohesion between extruded layers and the detachments between internal infill and external coating. The uniaxial compression test on a specially 3D printed wall segment did not actually show any particular danger for the stability of the structure, due to detachment phenomena. Rather, the experimental results showed some quite anomalous mechanical behaviors for a brittle construction material (studied at the mesoscale), especially as regards Poisson’s modulus and volumetric strain. The main experimental finding concerns the contribution of the internal infill, which seems to have a structural function and not just a filling function.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zuoqing Bi ◽  
Han Liang ◽  
Qianjia Hui

The rock burst proneness of coal is closely related to the coal mass structure. Therefore, the initial crack distribution of high burst proneness coal, its fracture development, and failure process under loading conditions are of great significance for the prediction of rock burst. In this study, high burst proneness coal is used to prepare experiment samples. The surface cracks of the samples are identified and recorded. The internal crack of the sample is detected by nuclear magnetic resonance (NMR) technology to determine the crack ratio of each sample. Then, 3D-CAD technology is used to restore the initial crack of the samples. Uniaxial compression test is carried out, and AE properties are recorded in the test. The stress-strain curve, the distribution of the fractural points within the sample at different stress states, and the relationship between ring count and stress are obtained. Results show that the stress-strain curves of high burst proneness coal are almost linear, to which the stress-ring count curves are similar. The distributions of fractural points in different bearing states show that the fracture points emerge in the later load stage and finally penetrate to form macrofracture, resulting in sample failure. This study reveals the initial crack distribution of coal with high burst proneness and the fracture development under bearing conditions, which provides a theoretical basis for the prediction technology of rock burst and technical support for the research of coal structure.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7840
Author(s):  
Suran Wang ◽  
Haohao Liao ◽  
Youliang Chen ◽  
Tomás Manuel Fernández-Steeger ◽  
Xi Du ◽  
...  

For thermal and loaded rock in engineering structures for some projects, triple-shear Drucker–Prager yield criteria, compaction coefficient K, damage variable correction factor δ, and thermal damage variable DT are introduced in a new thermomechanical (TM) constitutive model for the entire process. The compaction stage of rock in uniaxial compression test and the strain softening of rock caused by thermal attack are considered in this article. The damage evolution of rocks is described by a damage variable and a constitutive equation, which are in agreement with the actual thermal experimental breakage. The uniaxial compressive strength of granite subjected to a TM coupling effect can be predicted properly by this new unified constitutive model. The new TM unified constitutive model considering the compaction stage and post-failure stage is in good agreement with the test curves throughout the entire process. The coupling effect of heat and load in the total damage of rock has obvious nonlinear properties, but the coupling effect significantly weakens the specimens. By using the new TM unified constitutive model, the whole process of changes in rock damage with strain after high temperature can be calculated. Meanwhile, the model well represents the stress–strain curve at the post-failure stage. It is expected that this model can provide references for studying the mechanical response of the rock damage propagation characteristics in the future.


2021 ◽  
Author(s):  
Alexis Koulidis ◽  
Fahd Mohamed ◽  
Shehab Ahmed

Abstract Challenging drilling applications and low oil prices have created a new emphasis on innovation in the industry. This research investigates the value of drill bit based force sensing at the rock-cutter interface. For this purpose, a laboratory-based mini-rig has been built in order to recreate a scaled drilling process. The work aims to build a better understanding of the collected force and torque data despite the semi-continuous drilling process. This data is then used to estimate the formation strength. A scaled drill bit with two cutters was designed with sensors integrated into the drill bit cutter, drill string and the mini-rig structure. The mini-rig design allowed the accurate control of depth of cut by utilizing a comprehensive data acquisition and control system during the experiments. Initially, fifty-five samples were prepared with various water/gypsum ratios for a uniaxial compression test, scratch test, and for testing in the mini-rig. Prior to the mini-rig experiments, the results of the uniaxial compression and scratch tests were used as a benchmark to extract rock properties and the state of stress behavior. The experiments under atmospheric conditions revealed that the mini-rig could accurately estimate formation strength from a few rotations. The force data at the bit-rock interface was correlated with the torque measurements, and the results indicate that the tangential force has similar trends and relatively similar values. The groove created by the drill bit's rotating trajectory has a 14.45 cm circumference. This allows for a significant amount of data to be captured from a single rotation. The circular cutter geometry's influence is crucial for a continuous process since the active cutting area is continuously changing due to the pre-cut groove. The performed depth of cuts ranged from 0.1 to 1 mm in the same groove, and thus the active cutting area can be accurately calculated in real-time while conducting the experiments. Tangential and normal force data from the scratch test was analyzed in order to provide insights for correlation with the mini-rig data. The analysis shows that both tests give similar trends to the force measurements from the mini-rig. Moreover, the benchmark value of formation strength that was obtained from the uniaxial compression test was also in the same range. This illustrates the potential viability of drill bit based formation strength measurement due to the similarity between mini-rig test results and those using more classical testing practices. The experimental setup can provide a continuous cutting process that allows an accurate estimation of formation strength during a semi-continuous drilling operation with analogous application in the field. This can lead to an in-depth understanding of drilled formation properties while drilling and possibly assist in evaluating cutter wear state in-situ.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Yu-Zhou Zheng ◽  
Qin Fang ◽  
Heng-Bo Xiang ◽  
Hai-Chun Yan

To explore the influence of microexpansive concrete self-stress on the performance of steel pipe concrete, the expansion rate test of microexpansive concrete confined by steel tube was carried out with different expansion rates. Then, the mechanical properties of high-strength steel tube-confined microexpansive concrete (HSTCMC) short columns were conducted by the uniaxial compression test. The length-to-diameter ratio, the expansion rate of the microexpansive concrete, and the steel tube thickness were investigated in the study. Furthermore, the ABAQUS software was employed to analyze the microexpansive mechanism of the concrete, and it was verified by the uniaxial compression test. The test results show that the concrete possesses a remarkable volume expansion phenomenon, which was up to 150 με after four days of maintenance time. The mechanical properties of the HSTCMC short columns were greatly improved compared to the control RC pier. The yield and ultimate strength of the HSTCMC short columns can be enhanced to 8.9% and 14.6%, and with the content of expansive agent that increased from 8% to 12%. The finite element analysis results highlighted that the end constraint at the two ends has the biggest influence on the mechanical performance of the HSTCMC short columns, followed by the thickness of the steel tube and the content of the expansive agent. It should be noted that the self-stress of microexpansive concrete will be decreased with the increase in the length-to-diameter ratio, when the length-to-diameter ratio is less than four. Furthermore, the constraint effect of the circular steel tube on the microexpansive concrete is better than that of the rectangular section steel tube.


Sign in / Sign up

Export Citation Format

Share Document