Study of Combination Therapy With the MEK Inhibitor, Cobimetinib, Immune Checkpoint Blockade, Atezolizumab, and the AUTOphagy Inhibitor, Hydroxychloroquine in KRAS-mutated Advanced Malignancies

Author(s):  
2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii108-ii108
Author(s):  
Jayeeta Ghose ◽  
Baisakhi Raychaudhuri ◽  
Kevin Liu ◽  
William Jiang ◽  
Pooja Gulati ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is associated with systemic and intratumoral immunosuppression. Part of this immunosuppression is mediated by myeloid derived suppressor cells (MDSCs). Preclinical evidence shows that ibrutinib, a tyrosine kinase inhibitor FDA approved for use in chronic lymphocytic leukemia and known to be CNS penetrant, can decrease MDSC generation and function. Also, focal radiation therapy (RT) synergizes with anti-PD-1 therapy in mouse GBM models. Thus, we aimed to test the combination of these approaches on immune activation and survival in a preclinical immune-intact GBM mouse model. METHODS C57BL/6 mice intracranially implanted with the murine glioma cell line GL261-Luc2 were divided into 8 groups consisting of treatments with ibrutinib, RT (10 Gy SRS), or anti-PD-1 individually or in each combination (along with a no treatment control group). Immune cell subset changes (flow-cytometry) and animal survival (Kaplan-Meier) were assessed (n=10 mice per group). RESULTS Median survival of the following groups including control (28 days), ibrutinib (27 days), RT (30 days) or anti-PD-1 (32 days) showed no significant differences. However, a significant improvement in median survival was seen in mice given combinations of ibrutinib+RT (35 days), ibrutinib+anti-PD-1 (38 days), and triple therapy with ibrutinib+RT+anti-PD-1 (48 days, p < 0.05) compared to controls or single treatment groups. The reproducible survival benefit of triple combination therapy was abrogated in the setting of CD4+ and CD8+ T cell depletion. Contralateral intracranial tumor re-challenge in long-term surviving mice suggested generation of tumor-specific immune memory responses. The immune profile of the tumor microenvironment (TME) showed increased cytotoxic CD8+ T cells and decreased MDSCs and regulatory T cells in the triple combination therapy mice compared to controls. CONCLUSION The combination of ibrutinib, focal RT, and anti-PD-1 immune checkpoint blockade led to a significant survival benefit compared to controls in a preclinical model of GBM.


2019 ◽  
Vol 14 (10) ◽  
pp. S449-S450
Author(s):  
P. Gaudreau ◽  
D. Peng ◽  
B. Rodriguez ◽  
J. Fradette ◽  
L. Gibson ◽  
...  

Author(s):  
Gary Middleton

Abstract In this first in a series of ‘Trials Watch’ articles we briefly review a highly selected set of clinical trials that are currently recruiting or about to open to recruitment in melanoma, the disease first transformed by the introduction of immune checkpoint blockade inhibitors (ICI). We place equal emphasis on phase I/II studies investigating the activity of biologically compelling novel immunotherapeutics, and on randomised trials of ICI with and without novel agents, as these latter studies optimise the standard of care use of ICI, and determine whether novel agents become part of the approved therapeutic armamentarium. We do not consider here combination therapy with other checkpoint antagonists or agonists besides combination of anti-PD-1/PD-L1 monoclonal antibodies (mAbs) with anti-CTLA4 mAbs, as these will be reviewed in a subsequent article in this series. A glossary of agents to be discussed is found at the end of this article.


2021 ◽  
Vol 9 (2) ◽  
pp. e001636
Author(s):  
Stefano Pierini ◽  
Abhishek Mishra ◽  
Renzo Perales-Linares ◽  
Mireia Uribe-Herranz ◽  
Silvia Beghi ◽  
...  

BackgroundTumor endothelial marker 1 (TEM1) is a protein expressed in the tumor-associated endothelium and/or stroma of various types of cancer. We previously demonstrated that immunization with a plasmid-DNA vaccine targeting TEM1 reduced tumor progression in three murine cancer models. Radiation therapy (RT) is an established cancer modality used in more than 50% of patients with solid tumors. RT can induce tumor-associated vasculature injury, triggering immunogenic cell death and inhibition of the irradiated tumor and distant non-irradiated tumor growth (abscopal effect). Combination treatment of RT with TEM1 immunotherapy may complement and augment established immune checkpoint blockade.MethodsMice bearing bilateral subcutaneous CT26 colorectal or TC1 lung tumors were treated with a novel heterologous TEM1-based vaccine, in combination with RT, and anti-programmed death-ligand 1 (PD-L1) antibody or combinations of these therapies, tumor growth of irradiated and abscopal tumors was subsequently assessed. Analysis of tumor blood perfusion was evaluated by CD31 staining and Doppler ultrasound imaging. Immunophenotyping of peripheral and tumor-infiltrating immune cells as well as functional analysis was analyzed by flow cytometry, ELISpot assay and adoptive cell transfer (ACT) experiments.ResultsWe demonstrate that addition of RT to heterologous TEM1 vaccination reduces progression of CT26 and TC1 irradiated and abscopal distant tumors as compared with either single treatment. Mechanistically, RT increased major histocompatibility complex class I molecule (MHCI) expression on endothelial cells and improved immune recognition of the endothelium by anti-TEM1 T cells with subsequent severe vascular damage as measured by reduced microvascular density and tumor blood perfusion. Heterologous TEM1 vaccine and RT combination therapy boosted tumor-associated antigen (TAA) cross-priming (ie, anti-gp70) and augmented programmed cell death protein 1 (PD-1)/PD-L1 signaling within CT26 tumor. Blocking the PD-1/PD-L1 axis in combination with dual therapy further increased the antitumor effect and gp70-specific immune responses. ACT experiments show that anti-gp70 T cells are required for the antitumor effects of the combination therapy.ConclusionOur findings describe novel cooperative mechanisms between heterologous TEM1 vaccination and RT, highlighting the pivotal role that TAA cross-priming plays for an effective antitumor strategy. Furthermore, we provide rationale for using heterologous TEM1 vaccination and RT as an add-on to immune checkpoint blockade as triple combination therapy into early-phase clinical trials.


Gene Therapy ◽  
2015 ◽  
Vol 22 (11) ◽  
pp. 849-850 ◽  
Author(s):  
A M Ibrahim ◽  
Y Wang ◽  
N R Lemoine

Sign in / Sign up

Export Citation Format

Share Document