scholarly journals Heat Transfer and Flow Characteristics of Impinging Jet from Coaxial Circular Pipe with different Pipe-Diameter Ratio

2008 ◽  
Vol 28-1 (1) ◽  
pp. 117-117
Author(s):  
Takayuki SHIOYA
2007 ◽  
Vol 27 (Supplement1) ◽  
pp. 95-96
Author(s):  
Junichiro KAI ◽  
Minoru FUKUHARA ◽  
Hiroshi KATANODA ◽  
Naoko IINO ◽  
Akio KAMEDA

2009 ◽  
Vol 29-1 (1) ◽  
pp. 327-327
Author(s):  
Yukiko INOMATA ◽  
Minoru FUKUHARA ◽  
Hiroshi KATANODA ◽  
Hidenari YAMASHITA

1980 ◽  
Vol 102 (3) ◽  
pp. 508-512 ◽  
Author(s):  
S. Wong ◽  
L. E. Hochreiter

Analysis is carried out for dispersed flow heat transfer under reactor emergency cooling conditions. The present formulation explicitly reveals an extra dependence of the heat transfer coefficient and Nusselt number on the mean vapor temperature for droplet dispersed flow which is not found in single phase flow heat transfer. The heat transfer results obtained from three different geometries—an infinite square array of cylindrical rods, an annulus and a circular pipe—are compared; all have the same hydraulic diameter. It is found that, within the framework of the present analysis, results for the annulus and the rod bundles agree well when the pitch-to-diameter ratio is 1.5 or greater. The circular pipe is in general a poor approximation for rod bundle geometries except at a pitch-to-diameter ratio of about 1.3 which is typical of present day light water reactor fuel assemblies.


Author(s):  
Ann M. Anderson ◽  
David M. Chapin

The objective of this study was to characterize the heat transfer performance of a dimpled surface in an impinging jet flow field. Using a statistical design of experiments approach we designed 8 (23) test plates to study the effects of dimple spacing, dimple depth and dimple diameter and compared them to smooth plate heat transfer. The plates were placed opposite a square jet and tests were run for Reynolds numbers based on jet hydraulic diameter of 10,000 to 30,000 at a range of jet to plate spacings. Plate averaged heat transfer coefficients, based on actual surface area (including dimple area) were measured under steady state conditions. The results show that the dimple spacing to diameter ratio has the most significant effect on heat transfer performance at high velocities, while the dimple depth to diameter ratio is more significant at lower velocities. The effect of dimple diameter was found to be significant only under poor heat transfer conditions. Particle Image Velocimetry images of the dimple surface flow field showed enhanced entrainment at high velocities which may explain why the dimple spacing to diameter effect is more significant at high velocities.


Author(s):  
Rahmad Syah ◽  
Amir Bateni ◽  
Kamran Valizadeh ◽  
Marischa Elveny ◽  
Mehdi Shaeban Jahanian ◽  
...  

Abstract Improving the thermal efficiency of shell-tube heat exchangers is essential in industries related to these heat exchangers. Installing heat transfer boosters on the side of the converter tube is one of the most appropriate ways to enhance heat transfer and increase the efficiency of this equipment. In this article, spring turbulence is studied using the computational fluid dynamics tool. The displacement heat transfer coefficient and the friction coefficient were selected as the primary target parameters, and the effect of using spring tabulators on them was investigated. The ratio of torsion step length to turbulence pipe length, wire diameter to pipe diameter ratio, and flow regime was studied as the main simulation variables, and the simulation results were compared with a simple pipe. The effect of water-acting fluid, R22, and copper Nanofluid on tubes containing turbidity was compared and investigated. This study showed that due to the pressure drop, the pipe with a torsional pitch to pipe length ratio of 0.17, a turbulent diameter to pipe diameter ratio of 0.15, and a Reynolds number of 50,000 with fluid R22 has the best performance for heat transfer.


Sign in / Sign up

Export Citation Format

Share Document