An Analysis of Heat Transfer to Axial Dispersed Flow between Rod Bundles under Reactor Emergency Cooling Conditions

1980 ◽  
Vol 102 (3) ◽  
pp. 508-512 ◽  
Author(s):  
S. Wong ◽  
L. E. Hochreiter

Analysis is carried out for dispersed flow heat transfer under reactor emergency cooling conditions. The present formulation explicitly reveals an extra dependence of the heat transfer coefficient and Nusselt number on the mean vapor temperature for droplet dispersed flow which is not found in single phase flow heat transfer. The heat transfer results obtained from three different geometries—an infinite square array of cylindrical rods, an annulus and a circular pipe—are compared; all have the same hydraulic diameter. It is found that, within the framework of the present analysis, results for the annulus and the rod bundles agree well when the pitch-to-diameter ratio is 1.5 or greater. The circular pipe is in general a poor approximation for rod bundle geometries except at a pitch-to-diameter ratio of about 1.3 which is typical of present day light water reactor fuel assemblies.

Author(s):  
Koichi Hata ◽  
Katsuya Fukuda ◽  
Tohru Mizuuchi

Natural convection heat transfer from vertical 7×7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal-hydraulic design for the bundle geometry with equilateral square array, ESA. The unsteady laminar three dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The PHOENICS code was used for the calculation considering the temperature dependence of thermo-physical properties concerned. The 7×7 test rods for diameter (D = 7.6 mm), heated length (L = 200 mm) and L/d (= 26.32) were used in this work. The surface heat fluxes for each cylinder were equally given for a modified Rayleigh number, (Rf,L)ij and (Rf,L)Nx×Ny,S/D, ranging from 3.08×104 to 4.28×107 (q = 1×104∼7×106 W/m2) in liquid temperature (TL = 673.15 K). The values of S/D, which are ratios of the diameter of flow channel for bundle geometry to the rod diameter, for vertical 7×7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with equilateral square array. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average value of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Rf,L)ij and (Rf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the equilateral square and triangle arrays including the effects of array size, (Rf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (= 1.8 to 6) and the modified Rayleigh number ((Rf,L)Nx×Ny,S/D = 3.08×104 to 4.28×107) within −9.49 to 10.6 % differences.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
D. Jaya Krishna ◽  
M. R. Thansekhar ◽  
S. P. Venkateshan ◽  
Tanmay Basak ◽  
Sarit K. Das

Buoyancy induced flows in a partially heat generating rod bundle enclosed inside a tall cavity are investigated. First, a detailed experimental study is carried out, and the thermal hydraulics is analyzed at different power inputs and boundary cooling rates of the enclosure. Later, a generalized non-Darcy simulation is developed using a heat generating orthotropic porous media approach and is compared with the experimental results. The results of a numerical simulation for natural convection in enclosed partially heat generating rod bundles satisfactorily predict the temperature distribution within the rod bundle. Finally, a parametric study is carried out by varying the porosity (pitch to diameter ratio of the rod bundle) of the considered enclosure for the understanding of flow physics and heat transfer in such applications.


1977 ◽  
Vol 99 (3) ◽  
pp. 411-418 ◽  
Author(s):  
V. K. Dhir ◽  
J. N. Castle ◽  
Ivan Catton

Sublimation of a horizontal slab of dry ice (≃ 190 K) placed beneath a pool of warm water or benzene (278–340 K) has been observed experimentally. Data for the heat transfer coefficient have been obtained in both steady and quasi-static states. The heat transfer coefficient for this pseudo film boiling process is found to be strongly dependent on the pool temperature. In the temperature range of stable film boiling, the heat transfer coefficient depends on the laminar or turbulent nature of the gas film. However, when the pool temperatures are such that a stable film can no longer be maintained, and the overlying liquid starts to freeze at the interface, the heat transfer coefficient data are correlated with the parameter cpΔTf/hsf for the liquid. Post-experiment visual observations of the dry ice surface show the presence of valleys and ridges arranged in a nearly square array spaced about one Taylor wavelength apart. An application of the present study to the fast reactor hypothetical accident situations in which a pool of molten fuel may be formed on horizontal steel surfaces is discussed.


2020 ◽  
Vol 307 ◽  
pp. 01038
Author(s):  
Mohammed Zohud ◽  
Ahmed Ouadha ◽  
Redouane Benzeguir

The present paper aims to numerically investigate the flow, heat transfer and entropy generation of some hydrocarbon based nanorefrigerants flowing in a circular tube subject to constant heat flux boundary condition. Numerical tests have been performed for 4 types of nanoparticles, namely Al2O3, CuO, SiO2, and ZnO with a diameter equal to 30 nm and a volume concentration of φ = 5%. These nanoparticles are dispersed in some hydrocarbon-based refrigerants, namely tetrafluoroethane (R134a), propane (R290), butane (R600), isobutane (R600a) and propylene (R1270). Computations have been performed for Reynolds number ranging from 600 to 2200. The numerical results in terms of the average heat transfer coefficient of pure refrigerants have been compared to values obtained using correlations from the literature. The results show that the increase of the Reynolds number increases the heat transfer coefficient and decreases the total entropy generation.


1970 ◽  
Vol 92 (1) ◽  
pp. 73-82 ◽  
Author(s):  
D. M. Kercher ◽  
W. Tabakoff

The results of an experimental investigation on the average surface heat transfer co-efficients under a perforated plate of multiple, square array, round impinging air jets are presented. Correlation of the heat transfer performance in a semi-enclosed environment is presented. The correlation includes the effects of the jet “spent air” flowing perpendicular to the jets; the effects of the jet diameter, jet spacing, and jet-to-surface distance. The data cover a range of jet diameter Reynolds number from 3 × 102 to 3 × 104, jet spacing from 3.1 to 12.5 dia, and plate-to-surface distance of 1.0 to 4.8 dia. The results are compared with previously reported investigations with reasonable agreement. Correlation is in the form NuD,x = φ1φ2ReDm(Zn/D)0.091Pr1/3 where φ1 and m are functions of the jet spacing parameter, Xn/D, and Reynolds number, and φ2 is the heat transfer coefficient degradation factor due to “spent air”. φ1, φ2 and m are presented in graphical form as a function of important dimensionless parameters.


1993 ◽  
Vol 115 (4) ◽  
pp. 912-920 ◽  
Author(s):  
J.-C. Han ◽  
Y.-M. Zhang ◽  
Kathrin Kalkuehler

The influence of uneven wall temperature on the local heat transfer coefficient in a rotating, two-pass, square channel with smooth walls is investigated for rotation numbers from 0.0352 to 0.352 by varying Reynolds numbers from 25,000 to 2500. The two-pass square channel, composed of 12 isolated copper sections, has a length-to-hydraulic diameter ratio of 12. The mean rotating radius to the channel hydraulic diameter ratio is kept at a constant value of 30. Three cases of thermal boundary conditions are studied: (A) four walls at the same temperature, (B) four walls at the same heat flux, and (C) trailing wall hotter than leading with side walls unheated and insulated. The results for case A of four walls at the same temperature show that the first channel (radial outward flow) heat transfer coefficients on the leading surface are much lower than that of the trailing surface due to the combined effect of Coriolis and buoyancy forces. The second channel (radial inward flow) heat transfer coefficients on the leading surface are higher than that of the trailing surface. The difference between the heat transfer coefficients for the leading and trailing surface in the second channel is smaller than that in the first channel due to the opposite effect of Coriolis and buoyancy forces in the second channel. However, the heat transfer coefficients on each wall in each channel for cases B and C are higher than case A because of interactions between rotation-induced secondary flows and uneven wall temperatures in cases B and C. The results suggest that the effect of uneven wall temperatures on local heat transfer coefficients in the second channel is greater than that in the first channel.


Sign in / Sign up

Export Citation Format

Share Document