CHROMATOGRAPHIC METHODS DETERMINATION OF PESTICIDES FROM THE GROUP OF NONONICOTINOIDS

Author(s):  
D.V. Aleev ◽  
◽  
K.F. Khalikova ◽  
K.E. Burkin ◽  
A.V. Malaniev ◽  
...  
2014 ◽  
Vol 38 (3) ◽  
pp. 353-370 ◽  
Author(s):  
Anna Laura Capriotti ◽  
Chiara Cavaliere ◽  
Patrizia Foglia ◽  
Susy Piovesana ◽  
Salvatore Ventura

2015 ◽  
Vol 4 (3) ◽  
pp. 56 ◽  
Author(s):  
Alexandr Ya Yashin ◽  
Boris V. Nemzer ◽  
Emilie Combet ◽  
Yakov I. Yashin

<p>Despite the fact that mankind has been drinking tea for more than 5000 years, its chemical composition has been studied only in recent decades. These studies are primarily carried out using chromatographic methods. This review summarizes the latest information regarding the chemical composition of different tea grades by different chromatographic methods, which has not previously been reviewed in the same scope. Over the last 40 years, the qualitative and quantitative analyses of high volatile compounds were determined by GC and GC/MS. The main components responsible for aroma of green and black tea were revealed, and the low volatile compounds basically were determined by HPLC and LC/MS methods. Most studies focusing on the determination of catechins and caffeine in various teas (green, oolong, black and pu-erh) involved HPLC analysis.</p> <p>Knowledge of tea chemical composition helps in assessing its quality on the one hand, and helps to monitor and manage its growing, processing, and storage conditions on the other. In particular, this knowledge has enabled to establish the relationships between the chemical composition of tea and its properties by identifying the tea constituents which determine its aroma and taste. Therefore, assessment of tea quality does not only rely on subjective organoleptic evaluation, but also on objective physical and chemical methods, with extra determination of tea components most beneficial to human health. With this knowledge, the nutritional value of tea may be increased, and tea quality improved by providing via optimization of the growing, processing, and storage conditions.</p>


Author(s):  
Mahmoud A Tantawy ◽  
Israa A Wahba ◽  
Samah S Saad ◽  
Nesrin K Ramadan

Abstract Two sensitive, selective and precise chromatographic methods have been established for concomitant quantification of ciprofloxacin HCl (CIP), fluocinolone acetonide (FLU) along with ciprofloxacin impurity A (CIP-imp A). The first method was thin-layer chromatography (TLC-densitometry) where separation was accomplished using TLC silica plates 60 G.F254 as a stationary phase and chloroform–methanol–33%ammonia (4.6:4.4:1, by volume) as a developing system. The obtained plates were scanned at 260 nm over concentration ranges of 1.0–40.0, 0.6–20.0 and 1.0–40.0 μg band−1 for CIP, FLU and CIP-imp A, respectively. The second method was based on high-performance liquid chromatography using a Zorbax ODS column (5 μm, 150 × 4.6 mm i.d.) where adequate separation was achieved through a mobile phase composed of phosphate buffer pH 3.6–acetonitrile (45:55, v/v) at flow rate 1.0 mL min−1 with ultraviolet detection at 254 nm. Linear regressions were obtained in the range of 1.0–40.0 μg mL−1 for CIP, 0.6–20.0 μg mL−1 for FLU and 1.0–40.0 μg mL−1 for CIP-imp A. The suggested methods were validated in compliance with the International Conference on Harmonization guidelines and were successfully applied for determination of CIP and FLU in bulk powder and newly marketed otic solution.


Sign in / Sign up

Export Citation Format

Share Document