scholarly journals Determination of Ice Crystal Size Distributions in Frozen Desserts

1991 ◽  
Vol 74 (10) ◽  
pp. 3334-3344 ◽  
Author(s):  
D.P. Donhowe ◽  
R.W. Hartel ◽  
R.L. Bradley
2014 ◽  
Vol 71 (8) ◽  
pp. 2905-2926 ◽  
Author(s):  
B. Kärcher ◽  
A. Dörnbrack ◽  
I. Sölch

Abstract Small-scale dynamical variability affects atmospheric supersaturation and therefore the development of ice clouds via uptake of water vapor on ice crystals. This variability and its implications for ice growth are difficult to capture experimentally and theoretically. By interpreting supersaturation as a stochastic variable, the authors examine the average temporal behavior of, and the link between, supersaturation fluctuations and ice crystal size distributions in upper-tropospheric cirrus clouds. The authors classify cirrus types according to their ability to dampen supersaturation fluctuations owing to depositional growth of cloud ice and study how size distributions in them respond to supersaturation variability, investigating the possibility of the occurrence of ice-supersaturated states within cirrus. Typical time scales for growth and damping impacts on supersaturation are minutes and minutes to hours, respectively, and are highly variable among cirrus types and within single clouds. Transient deviations from saturated equilibrium states can occur depending on the ice crystal number concentration and size and on the strength of the small-scale dynamical forcing. Supersaturation preferentially occurs in cloud regions with few small ice crystals. The authors demonstrate that supersaturation fluctuations in very thin tropical tropopause cirrus create long-lived supersaturated states. Furthermore, they potentially generate few large ice crystals, broadening size distributions, and significantly enhance water mass fluxes due to sedimentation. Although not studied here, they may also allow new ice crystals to nucleate. Implications of these findings for those clouds to dehydrate air entering the lower stratosphere are discussed and future research needs are outlined.


2014 ◽  
Vol 31 (12) ◽  
pp. 2567-2590 ◽  
Author(s):  
Robert C. Jackson ◽  
Greg M. McFarquhar ◽  
Jeff Stith ◽  
Matthew Beals ◽  
Raymond A. Shaw ◽  
...  

Abstract Prior estimates of ice crystal size distributions derived from 2D cloud probes (2DCs) have been artificially amplified by small ice crystals generated from the shattering of large ice crystals on the probe tips. Although antishatter tips and algorithms exist, there is considerable uncertainty in their effectiveness. This paper examines differences in ice crystal size distributions from adjacent 2DCs with standard and antishatter tips, and processed with and without antishattering algorithms. The measurements were obtained from the National Research Council of Canada Convair-580 during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the National Center for Atmospheric Research C-130 during the 2011 Instrumentation Development and Education in Airborne Science (IDEAS-2011). The 2DC size distributions are compared with those from the Holographic Detector for Clouds (HOLODEC), which has antishatter tips and allows for identification of shattering through spatial statistics. The ratio of the number concentration N of particles with maximum dimensions 125–500 μm from the 2DC with standard tips to that from the 2DC with modified tips was correlated with median mass diameter and perimeter divided by area, but not with airspeed, attack, and attitude angles. Antishatter tips and algorithms reduced N by up to a factor of 10 for IDEAS-2011 and ISDAC, but neither alone removed all artifacts. For the period with coincident data, both N from the HOLODEC and 2DC with modified tips are around 5 × 10−3 L−1 μm−1, suggesting that antishatter tips and algorithms combined remove artifacts from the 2DC for the conditions sampled during IDEAS-2011.


2006 ◽  
Vol 63 (9) ◽  
pp. 2307-2323 ◽  
Author(s):  
J. K. Roskovensky ◽  
K. N. Liou

Abstract The importance of separating thin cirrus and aerosols from satellite remote sensing to produce broader and more accurate fields for the determination of respective radiative forcings is highlighted. This has been accomplished through the development of a new methodology for retrieving both thin cirrus and aerosol optical depths simultaneously over oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. This method employs a procedure to quantify and remove the thin cirrus contribution to the observed reflectance through a correlation of visible and 1.38-μm reflectances so that the aerosol signal can be extracted. Aerosol optical depths are then retrieved through comparisons with the simulated reflectances created a priori. Using the aerosol optical depth along with the specific viewing geometry and surface reflectance as pointers to locations in a lookup table of modeled reflectances, cirrus optical depth and an effective ice crystal size can be retrieved. An iterative scheme has been created that uses the retrieved effective cirrus ice crystal size to account for the effect that the particle size distribution has on the correlation of visible and 1.38-μm reflectance. Retrievals of both aerosol and thin cirrus optical depths over the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site of Nauru performed on a limited number of cases have proven to be consistent with values determined from ground measurements. Also, comparisons with the MODIS aerosol retrievals over a broad area of ocean have highlighted the potential usefulness of this procedure in increasing the amount of potential aerosol information recovered and removing the ever-present thin cirrus contamination.


Sign in / Sign up

Export Citation Format

Share Document