scholarly journals Free Educational Android Mobile Application for Radiobiology

2021 ◽  
Vol 28 (3) ◽  
pp. 315-319
Author(s):  
Camil Ciprian MIRESTEAN ◽  
◽  
Alexandru Dumitru ZARA ◽  
Roxana Irina IANCU ◽  
Dragos Petru Teodor IANCU ◽  
...  

The use of mobile devices and applications dedicated to different medical fields has improved the quality and facilitated medical care, especially in the last 10 years. The number of applications running on the software platforms of smart phones or other smart devices is constantly growing. Radiotherapy also benefits from applications (apps) for TNM staging of cancers, for target volume delineation and toxicity management but also from radiobiological apps for calculating equivalent dose schemes for different dose fractionation regimens. In the context of the increasingly frequent use of altered fractionation schemes, the use of radiobiological models and calculations based on the linear quadratic model (LQ) becomes a necessity. We aim to evaluate free radiobiology apps for the Android software platform. Given the global educational deficit, the lack of experts and the concordance between radiobiology education and the need to use basic clinical notions of modern radiotherapy, the existence of free apps for the Android platform running on older generation processors can transform even an old smart device in a powerful “radiobiology station.” Apps for radiobiology can help the radiation oncologist and medical physicist with responsibilities in radiotherapy treatment planning in the context of accelerated adoption of hypo-fractionation regimens and calculation of the effect of treatment gaps, a topic of interest in the COVID-19 pandemic context. Radiobiology apps can also partially fill the educational gap in radiobiology by arousing the interest of young radiation oncologists to deepen the growing universe of fundamental and clinical radiobiology.

2021 ◽  
Author(s):  
Luis Alberto Fernández ◽  
Lucía Fernández

Abstract This paper deals with the classic radiotherapy dose fractionation problem for cancer tumors concerning the following goals: a) To maximize the effect of radiation on the tumor, restricting the effect produced to the organs at risk (healing approach). b) To minimize the effect of radiation on the organs at risk, while maintaining enough effect of radiation on the tumor (palliative approach). We will assume the linear-quadratic model to characterize the radiation effect and consider the stationary case (that is, without taking into account the timing of doses and the tumor growth between them). The main novelty with respect to previous works concerns the presence of minimum and maximum dose fractions, to achieve the minimum effect and to avoid undesirable side effects, respectively. We have characterized in which situations is more convenient the hypofractionated protocol (deliver few fractions with high dose per fraction) and in which ones the hyperfractionated regimen (deliver a large number of lower doses of radiation) is the optimal strategy. In all cases, analytical solutions to the problem are obtained in terms of the data. In addition, the calculations to implement these solutions are elementary and can be carried out using a pocket calculator.


Author(s):  
Валерий Лисин ◽  
V. Lisin

Purpose: To estimate the feasibility of using linear-quadratic model (LQM) for planning neutron therapy regimens by the criterion of early radiation-induced reactions. Material and methods: The LQM, which described the reaction of tissues to fractionated irradiation, was used. The results obtained were compared with similar results found on the basis of the TDF model successfully used for neutron therapy planning. Results: The LQM parameters αn and βn for radiation induced skin damage were found. The dependence of a single dose of neutrons on the number of therapy sessions was obtained. This dependence was in good agreement with the analogous dependence found by the TDF model, which indicated the correctness of the method for calculating it. When using LQM for planning neutron therapy, the issue related with the time intervals between sessions was considered. For this purpose, the comparative calculations of the ratio of the total effect, determined by the LQM, and the TDF factor were carried out. The difference between the compared values did not exceed 6 %, thus allowing the time interval for planning neutron therapy using LQM to be excluded. Two methods to control the damage to normal tissue using LQM were considered. The first method was based on the evaluation of part of the used tolerance of the irradiated tissue, and the second one was carried out by transferring the applied dose fractionation regimen of neutron therapy to the isoeffective standard regimen of photon therapy. Conclusion: It was shown that LQM can be used for planning neutron therapy regimens in cancer patients by the criterion of early radiation-induced reactions. The results obtained extend the potential of radiobiological planning of neutron therapy and can serve as a basis for the development of the method of using LQM in prediction of late radiation-induced complications.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Alexandros Roniotis ◽  
Kostas Marias ◽  
Vangelis Sakkalis ◽  
Georgios C. Manikis ◽  
Michalis Zervakis

Applying diffusive models for simulating the spatiotemporal change of concentration of tumour cells is a modern application of predictive oncology. Diffusive models are used for modelling glioblastoma, the most aggressive type of glioma. This paper presents the results of applying a linear quadratic model for simulating the effects of radiotherapy on an advanced diffusive glioma model. This diffusive model takes into consideration the heterogeneous velocity of glioma in gray and white matter and the anisotropic migration of tumor cells, which is facilitated along white fibers. This work uses normal brain atlases for extracting the proportions of white and gray matter and the diffusion tensors used for anisotropy. The paper also presents the results of applying this glioma model on real clinical datasets.


Sign in / Sign up

Export Citation Format

Share Document