scholarly journals Future Direction of Image Sensor Technologies and Applications in Japan

Author(s):  
Masatoshi Ishikawa ◽  
Makoto Ikeda ◽  
Hirofumi Sumi ◽  
Jun Ohta ◽  
Kazutami Arimoto ◽  
...  
1972 ◽  
Vol 17 (6) ◽  
pp. 341-342
Author(s):  
STEPHEN T. MARGULIS

2017 ◽  
Vol 137 (2) ◽  
pp. 48-58
Author(s):  
Noriyuki Fujimori ◽  
Takatoshi Igarashi ◽  
Takahiro Shimohata ◽  
Takuro Suyama ◽  
Kazuhiro Yoshida ◽  
...  

Author(s):  
Makoto Motoyoshi ◽  
Hirofumi Nakamura ◽  
Manabu Bonkohara ◽  
Mitsumasa Koyanagi
Keyword(s):  

2020 ◽  
Vol 2020 (7) ◽  
pp. 143-1-143-6 ◽  
Author(s):  
Yasuyuki Fujihara ◽  
Maasa Murata ◽  
Shota Nakayama ◽  
Rihito Kuroda ◽  
Shigetoshi Sugawa

This paper presents a prototype linear response single exposure CMOS image sensor with two-stage lateral overflow integration trench capacitors (LOFITreCs) exhibiting over 120dB dynamic range with 11.4Me- full well capacity (FWC) and maximum signal-to-noise ratio (SNR) of 70dB. The measured SNR at all switching points were over 35dB thanks to the proposed two-stage LOFITreCs.


2020 ◽  
Vol 2020 (1) ◽  
pp. 91-95
Author(s):  
Philipp Backes ◽  
Jan Fröhlich

Non-regular sampling is a well-known method to avoid aliasing in digital images. However, the vast majority of single sensor cameras use regular organized color filter arrays (CFAs), that require an optical-lowpass filter (OLPF) and sophisticated demosaicing algorithms to suppress sampling errors. In this paper a variety of non-regular sampling patterns are evaluated, and a new universal demosaicing algorithm based on the frequency selective reconstruction is presented. By simulating such sensors it is shown that images acquired with non-regular CFAs and no OLPF can lead to a similar image quality compared to their filtered and regular sampled counterparts. The MATLAB source code and results are available at: http://github. com/PhilippBackes/dFSR


Sign in / Sign up

Export Citation Format

Share Document