scholarly journals Association between bicortical screw fixation at upper instrumented vertebra and risk for upper instrumented vertebra fracture

2017 ◽  
Vol 26 (5) ◽  
pp. 638-644 ◽  
Author(s):  
Young-Seop Park ◽  
Seung-Jae Hyun ◽  
Ho Yong Choi ◽  
Ki-Jeong Kim ◽  
Tae-Ahn Jahng

OBJECTIVEThe aim of this study was to investigate the risk of upper instrumented vertebra (UIV) fractures associated with UIV screw fixation (unicortical vs bicortical) and polymethylmethacrylate (PMMA) augmentation after adult spinal deformity surgery.METHODSA single-center, single-surgeon consecutive series of adult patients who underwent lumbar fusion for ≥ 4 levels (that is, the lower instrumented vertebra at the sacrum or pelvis and the UIV of the thoracolumbar spine [T9–L2]) were retrospectively reviewed. Age, sex, follow-up duration, sagittal UIV angle immediately postoperatively including several balance-related parameters (lumbar lordosis [LL], pelvic incidence, and sagittal vertical axis), bone mineral density, UIV screw fixation type, UIV PMMA augmentation, and UIV fracture were evaluated. Patients were divided into 3 groups: Group U, 15 patients with unicortical screw fixation at the UIV; Group P, 16 with bicortical screw fixation and PMMA augmentation at the UIV; and Group B, 21 with bicortical screw fixation without PMMA augmentation at the UIV.RESULTSThe mean number of levels fused was 6.5 ± 2.5, 7.5 ± 2.5, and 6.5 ± 2.5; the median age was 50 ± 29, 72 ± 6, and 59 ± 24 years; and the mean follow-up was 31.5 ± 23.5, 13 ± 6, and 24 ± 17.5 months in Groups U, P, and B, respectively (p > 0.05). There were no significant differences in balance-related parameters (LL, sagittal vertical axis, pelvic incidence–LL, and so on) among the groups. UIV fracture rates in Groups U (0%), P (31.3%), and B (42.9%) increased in sequence by group (p = 0.006). UIV bicortical screw fixation increased the risk for UIV fracture (OR 5.39; p = 0.02).CONCLUSIONSBicortical screw fixation at the UIV is a major risk factor for early UIV compression fracture, regardless of whether a thoracolumbosacral orthosis is used. To reduce the proximal junctional failure, unicortical screw fixation at the UIV is essential in adult spinal deformity correction surgery.

2018 ◽  
Vol 8 (7) ◽  
pp. 668-675
Author(s):  
Toshiyuki Nakazawa ◽  
Gen Inoue ◽  
Takayuki Imura ◽  
Masayuki Miyagi ◽  
Wataru Saito ◽  
...  

Study Design: Retrospective. Objectives: To evaluate the efficacy of S2 alar screws in surgery for correction of adult spinal deformity (ASD). Methods: We retrospectively reviewed the cases of 23 patients (mean follow-up: 18.5 months, minimum 12 months) who underwent corrective surgery for ASD using S2 alar screws as anchors for instrumentation of lower vertebrae. The background of the patients and their spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], lumbar lordosis [LL], thoracic kyphosis [TK], sagittal vertical axis [SVA], and PI-LL) were evaluated. Results: LL was improved from 9.7 ± 20.5° and SVA from 141.0 ± 64.0 mm before surgery to 39.0 ± 9.6° and 51.7 ± 40.8 mm immediately after surgery, respectively, and 38.2 ± 12.7° and 70.5 ± 59.2 mm at final follow-up. In 13 patients without sufficient correction (postoperative PI-LL ≥10°), bone mineral density and postoperative LL were significantly less, and PI, PI-LL, and PT were significantly greater than in patients with postoperative PI-LL <10°, suggesting that these are risk factors for undercorrection. In 5 patients, SVA increased more than 40 mm during follow-up. Postoperative LL was significantly less (31.4° vs 41.0°) and postoperative PI-LL was significantly greater (21.6° vs 9.3°) in these patients, suggesting a PI-LL mismatch induces postoperative progression of global malalignment. Conclusions: Use of S2 alar screws as anchors for instrumentation in ASD surgery should be restricted. Their use might be an option for patients with low PI, and without severe osteoporosis, in whom efficient surgical correction can be obtained.


2021 ◽  
pp. 1-12
Author(s):  
Emily P. Rabinovich ◽  
Thomas J. Buell ◽  
Tony R. Wang ◽  
Christopher I. Shaffrey ◽  
Justin S. Smith

OBJECTIVE Rod fracture (RF) after adult spinal deformity (ASD) surgery is reported in approximately 6.8%–33% of patients and is associated with loss of deformity correction and higher reoperation rates. The authors’ objective was to determine the effect of accessory supplemental rod (ASR) placement on postoperative occurrence of primary RF after ASD surgery. METHODS This retrospective analysis examined patients who underwent ASD surgery between 2014 and 2017 by the senior authors. Inclusion criteria were age > 18 years, ≥ 5 instrumented levels including sacropelvic fixation, and diagnosis of ASD, which was defined as the presence of pelvic tilt ≥ 25°, sagittal vertical axis ≥ 5 cm, thoracic kyphosis ≥ 60°, coronal Cobb angle ≥ 20°, or pelvic incidence to lumbar lordosis mismatch ≥ 10°. The primary focus was patients with a minimum 2-year follow-up. RESULTS Of 148 patients who otherwise met the inclusion criteria, 114 (77.0%) achieved minimum 2-year follow-up and were included (68.4% were women, mean age 67.9 years, average body mass index 30.4 kg/m2). Sixty-two (54.4%) patients were treated with traditional dual-rod construct (DRC), and 52 (45.6%) were treated with ASR. Overall, the mean number of levels fused was 11.7, 79.8% of patients underwent Smith-Petersen osteotomy (SPO), 19.3% underwent pedicle subtraction osteotomy (PSO), and 66.7% underwent transforaminal lumbar interbody fusion (TLIF). Significantly more patients in the DRC cohort underwent SPO (88.7% of the DRC cohort vs 69.2% of the ASR cohort, p = 0.010) and TLIF (77.4% of the DRC cohort vs 53.8% of the ASR cohort, p = 0.0001). Patients treated with ASR had greater baseline sagittal malalignment (12.0 vs 8.6 cm, p = 0.014) than patients treated with DRC, and more patients in the ASR cohort underwent PSO (40.3% vs 1.6%, p < 0.0001). Among the 114 patients who completed follow-up, postoperative occurrence of RF was reported in 16 (14.0%) patients, with mean ± SD time to RF of 27.5 ± 11.8 months. There was significantly greater occurrence of RF among patients who underwent DRC compared with those who underwent ASR (21.0% vs 5.8%, p = 0.012) at comparable mean follow-up (38.4 vs 34.9 months, p = 0.072). Multivariate analysis demonstrated that ASR had a significant protective effect against RF (OR 0.231, 95% CI 0.051–0.770, p = 0.029). CONCLUSIONS This study demonstrated a statistically significant decrease in the occurrence of RF among ASD patients treated with ASR, despite greater baseline deformity and higher rate of PSO. These findings suggest that ASR placement may provide benefit to patients who undergo ASD surgery.


Neurosurgery ◽  
2017 ◽  
Vol 83 (2) ◽  
pp. 270-276 ◽  
Author(s):  
Juan S Uribe ◽  
Jacob Januszewski ◽  
Michael Wang ◽  
Neel Anand ◽  
David O Okonkwo ◽  
...  

Abstract BACKGROUND Pelvic tilt (PT) is a compensatory mechanism for adult spinal deformity patients to mitigate sagittal imbalance. The association between preop PT and postop clinical and radiographic outcomes has not been well studied in patients undergoing minimally invasive adult deformity surgery. OBJECTIVE To evaluate clinical and radiographic outcomes in adult spinal deformity patients with high and low preoperative PT treated surgically using less invasive techniques. METHODS Retrospective case-control, institutional review board-approved study. A multicenter, minimally invasive surgery spinal deformity patient database was queried for 2-yr follow-up with complete radiographic and health-related quality of life (HRQOL) data. Hybrid surgery patients were excluded. Inclusion criteria were as follows: age &gt; 18 and either coronal Cobb angle &gt; 20, sagittal vertical axis &gt; 5 cm, pelvic incidence-lumbar lordosis (PI-LL) &gt; 10 or PT &gt; 20. Patients were stratified by preop PT as per Schwab classification: low (PT&lt; 20), mid (PT 20-30), or high (&gt;30). Postoperative radiographic alignment parameters (PT, PI, LL, Cobb angle, sagittal vertical axis) and HRQOL data (Visual Analog Scale Back/Leg, Oswestry Disability Index) were evaluated and analyzed. RESULTS One hundred sixty-five patients had complete 2-yr outcomes data, and 64 patients met inclusion criteria (25 low, 21 mid, 18 high PT). High PT group had higher preop PI-LL mismatch (32.1 vs 4.7; P &lt; .001). At last follow-up, 76.5% of patients in the high PT group had continued PI-LL mismatch compared to 34.8% in the low PT group (P &lt; .006). There was a difference between groups in terms of postop changes of PT (–3.9 vs 1.9), LL (8.7 vs 0.5), and PI-LL (–9.5 vs 0.1). Postoperatively, HRQOL data (Oswestry Disability Index and Visual Analog Scale) were significantly improved in both groups (P &lt; .001). CONCLUSION Adult deformity patients with high preoperative PT treated with minimally invasive surgical techniques had less radiographic success but equivalent clinical outcomes as patients with low PT.


2021 ◽  
pp. 219256822098447
Author(s):  
Alex S. Ha ◽  
Daniel Y. Hong ◽  
Andrew J. Luzzi ◽  
Josephine R. Coury ◽  
Meghan Cerpa ◽  
...  

Study Design: Retrospective cohort. Objective: Determine the rate and risk factors for S2AI screw-related pain after adult spinal deformity surgery with a minimum 2-year follow-up. Methods: A consecutive 83 spinal deformity patients undergoing surgical treatment between August 2015 and December 2017 with minimum 2-year follow-up for S2AI screw complication and screw-related pain were included. Linear regression was performed on various risk factors and postoperative S2AI screw-related pain. Subset analysis of 53 patients was performed on preoperative and postoperative SRS and ODI scores, operative data, and radiographic data. Results: The overall proportion of S2AI screw-related pain was 9.6%. An S2AI screw complication was identified radiographically in 10.8% of patients; among these, 22.2% experienced S2AI screw-related pain. 3.4% of all patients underwent S2A1 screw removal. The SRS, ODI, sagittal vertical axis (SVA), and coronal alignment scores/measurements improved following treatment in all patients. However, the mean difference for the pre and postoperative SRS function score (1.2 ± 0.5 vs 0.9 ± 0.8) and SVA (4.0 ± 4.9 cm vs 2.1 ± 4.8 cm) were higher for the pain group. Conclusions: A minimum 2-year analysis of S2AI screw fixation in adult spinal deformity patients showed that 9.6% of patients experienced S2AI screw-related pain and 3.4% of patients had S2A1 screws removed. The size and the number of S2AI screws did not predict postoperative pain, nor were radiographic findings correlated with clinical outcomes. The patient outcome scores, coronal alignment, and SVA improved for all patients, but within the pain group there was an overall larger change in the SVA and SRS function score.


2020 ◽  
Vol 33 (6) ◽  
pp. 822-829
Author(s):  
Darryl Lau ◽  
Alexander F. Haddad ◽  
Vedat Deviren ◽  
Christopher P. Ames

OBJECTIVERigid multiplanar thoracolumbar adult spinal deformity (ASD) cases are challenging and many require a 3-column osteotomy (3CO), specifically asymmetrical pedicle subtraction osteotomy (APSO). The outcomes and additional risks of performing APSO for the correction of concurrent sagittal-coronal deformity have yet to be adequately studied.METHODSThe authors performed a retrospective review of all ASD patients who underwent 3CO during the period from 2006 to 2019. All cases involved either isolated sagittal deformity (patients underwent standard PSO) or concurrent sagittal-coronal deformity (coronal vertical axis [CVA] ≥ 4.0 cm; patients underwent APSO). Perioperative and 2-year follow-up outcomes were compared between patients with isolated sagittal imbalance who underwent PSO and those with concurrent sagittal-coronal imbalance who underwent APSO.RESULTSA total of 390 patients were included: 338 who underwent PSO and 52 who underwent APSO. The mean patient age was 64.6 years, and 65.1% of patients were female. APSO patients required significantly more fusions with upper instrumented vertebrae (UIV) in the upper thoracic spine (63.5% vs 43.3%, p = 0.007). Radiographically, APSO patients had greater deformity with more severe preoperative sagittal and coronal imbalance: sagittal vertical axis (SVA) 13.0 versus 10.7 cm (p = 0.042) and CVA 6.1 versus 1.2 cm (p < 0.001). In APSO cases, significant correction and normalization were achieved (SVA 13.0–3.1 cm, CVA 6.1–2.0 cm, lumbar lordosis [LL] 26.3°–49.4°, pelvic tilt [PT] 38.0°–20.4°, and scoliosis 25.0°–10.4°, p < 0.001). The overall perioperative complication rate was 34.9%. There were no significant differences between PSO and APSO patients in rates of complications (overall 33.7% vs 42.3%, p = 0.227; neurological 5.9% vs 3.9%, p = 0.547; medical 20.7% vs 25.0%, p = 0.482; and surgical 6.5% vs 11.5%, p = 0.191, respectively). However, the APSO group required significantly longer stays in the ICU (3.1 vs 2.3 days, p = 0.047) and hospital (10.8 vs 8.3 days, p = 0.002). At the 2-year follow-up, there were no significant differences in mechanical complications, including proximal junctional kyphosis (p = 0.352), pseudarthrosis (p = 0.980), rod fracture (p = 0.852), and reoperation (p = 0.600).CONCLUSIONSASD patients with significant coronal imbalance often have severe concurrent sagittal deformity. APSO is a powerful and effective technique to achieve multiplanar correction without higher risk of morbidity and complications compared with PSO for sagittal imbalance. However, APSO is associated with slightly longer ICU and hospital stays.


2020 ◽  
pp. 1-8
Author(s):  
Hiroshi Moridaira ◽  
Satoshi Inami ◽  
Daisaku Takeuchi ◽  
Haruki Ueda ◽  
Hiromichi Aoki ◽  
...  

OBJECTIVEIssues with spinopelvic fixation for adult spinal deformity (ASD) include loss of the physiological mobility of the entire lumbar spine, perioperative complications, and medical costs. Little is known about the factors associated with successful short fusion for ASD. The authors evaluated radiographic and clinical outcomes after shorter fusion for different subtypes of ASD at 2 years postoperatively and examined factors associated with successful short fusion.METHODSThis was a single-center study of 37 patients who underwent short fusion and a minimum 2 years of follow-up for ASD in which lumbar kyphosis was the main deformity. The exclusion criteria were 1) age < 40 years, 2) previous lumbar vertebral fracture, 3) severe osteoporosis, 4) T10–L2 kyphosis > 20°, 5) scoliotic deformity with an upper end vertebra (UEV) above T12, and 6) concomitant Parkinson’s disease or neurological disease. The surgical procedures, radiographic course, and Oswestry Disability Index (ODI) were assessed, and correlations between radiographic parameters and postoperative ODI at 2 years were analyzed.RESULTSA mean of 3.5 levels were fused. The mean radiographic parameters preoperatively, at 2 weeks, and at 2 years, respectively, were as follows: coronal Cobb angle: 22.9°, 11.5°, and 12.6°; lumbar lordosis (LL): 12.9°, 35.8°, and 32.2°; pelvic incidence (PI) minus LL: 35.5°, 14.7°, and 19.2°; pelvic tilt: 29.4°, 23.1°, and 25.0°; and sagittal vertical axis 85.3, 36.7, and 59.2 mm. Abnormal proximal junctional kyphosis occurred in 8 cases. Revision surgery was performed to extend the length of fusion from a lower thoracic vertebra to the pelvis in 2 cases. The mean ODI scores preoperatively and at 2 years were 50.7% and 24.1%, respectively. Patient age, number of fused intervertebral segments, and radiographic parameters were analyzed by the stepwise method to identify factors contributing to the ODI score at 2 years, preoperative PI, and sagittal vertical axis at 2 years. On receiver operating characteristic curve analysis of the minimal clinically important difference of ODI (15%) and preoperative PI, the cutoff value of the preoperative PI was 47° (area under the curve 0.75).CONCLUSIONSIn terms of subtypes of ASD in which lumbar kyphosis is the main deformity, if the PI is < 47°, then the use of short fusion preserving mobile intervertebral segments can produce adequate LL for the PI, improving both postoperative global spinal alignment and quality of life.


2016 ◽  
Vol 25 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Khoi D. Than ◽  
Paul Park ◽  
Kai-Ming Fu ◽  
Stacie Nguyen ◽  
Michael Y. Wang ◽  
...  

OBJECTIVE Minimally invasive surgery (MIS) techniques are increasingly used to treat adult spinal deformity. However, standard minimally invasive spinal deformity techniques have a more limited ability to restore sagittal balance and match the pelvic incidence–lumbar lordosis (PI-LL) than traditional open surgery. This study sought to compare “best” versus “worst” outcomes of MIS to identify variables that may predispose patients to postoperative success. METHODS A retrospective review of minimally invasive spinal deformity surgery cases was performed to identify parameters in the 20% of patients who had the greatest improvement in Oswestry Disability Index (ODI) scores versus those in the 20% of patients who had the least improvement in ODI scores at 2 years' follow-up. RESULTS One hundred four patients met the inclusion criteria, and the top 20% of patients in terms of ODI improvement at 2 years (best group, 22 patients) were compared with the bottom 20% (worst group, 21 patients). There were no statistically significant differences in age, body mass index, pre- and postoperative Cobb angles, pelvic tilt, pelvic incidence, levels fused, operating room time, and blood loss between the best and worst groups. However, the mean preoperative ODI score was significantly higher (worse disability) at baseline in the group that had the greatest improvement in ODI score (58.2 vs 39.7, p < 0.001). There was no difference in preoperative PI-LL mismatch (12.8° best vs 19.5° worst, p = 0.298). The best group had significantly less postoperative sagittal vertical axis (SVA; 3.4 vs 6.9 cm, p = 0.043) and postoperative PI-LL mismatch (10.4° vs 19.4°, p = 0.027) than the worst group. The best group also had better postoperative visual analog scale back and leg pain scores (p = 0.001 and p = 0.046, respectively). CONCLUSIONS The authors recommend that spinal deformity surgeons using MIS techniques focus on correcting a patient's PI-LL mismatch to within 10° and restoring SVA to < 5 cm. Restoration of these parameters seems to impact which patients will attain the greatest degree of improvement in ODI outcomes, while the spines of patients who do the worst are not appropriately corrected and may be fused into a fixed sagittal plane deformity.


2020 ◽  
pp. 219256822096075
Author(s):  
Philip K. Louie ◽  
Sravisht Iyer ◽  
Krishn Khanna ◽  
Garrett K. Harada ◽  
Alina Khalid ◽  
...  

Study Design: Retrospective case series. Objective: The purpose of this study is to evaluate the clinical and radiographic outcomes following revision surgery following Harrington rod instrumentation. Methods: Patients who underwent revision surgery with a minimum of 1-year follow-up for flatback syndrome following Harrington rod instrumentation for adolescent idiopathic scoliosis were identified from a multicenter dataset. Baseline demographics and intraoperative information were obtained. Preoperative, initial postoperative, and most recent spinopelvic parameters were compared. Postoperative complications and reoperations were subsequently evaluated. Results: A total of 41 patients met the inclusion criteria with an average follow-up of 27.7 months. Overall, 14 patients (34.1%) underwent a combined anterior-posterior fusion, and 27 (65.9%) underwent an osteotomy for correction. Preoperatively, the most common lower instrumented vertebra (LIV) was at L3 and L4 (61%), whereas 85% had a LIV to the pelvis after revision. The mean preoperative pelvic incidence–lumbar lordosis mismatch and C7 sagittal vertical axis were 23.7° and 89.6 mm. This was corrected to 8.1° and 28.9 mm and maintained to 9.04° and 34.4 mm at latest follow-up. Complications included deep wound infection (12.2%), durotomy (14.6%), implant related failures (14.6%), and temporary neurologic deficits (22.0%). Eight patients underwent further revision surgery at an average of 7.4 months after initial revision. Conclusions: There are multiple surgical techniques to address symptomatic flatback syndrome in patients with previous Harrington rod instrumentation for adolescent idiopathic scoliosis. At an average of 27.7 months follow-up, pelvic incidence–lumbar lordosis mismatch and C7 sagittal vertical axis can be successfully corrected and maintained. However, complication and reoperation rates remain high.


2020 ◽  
pp. 219256822096075
Author(s):  
Jonathan Charles Elysee ◽  
Francis Lovecchio ◽  
Renaud Lafage ◽  
Bryan Ang ◽  
Alex Huang ◽  
...  

Study Design: Retrospective cohort study. Objective: To investigate correlations between preoperative supine imaging and postoperative alignment. Methods: A retrospective review was conducted of a single-institution database of patients with adult spinal deformity (ASD). Patients were stratified by fusion location in the lumbar or thoracic spine. Outcomes of interest were postoperative lumbar lordosis (LL) and thoracic kyphosis (TK). Sagittal alignment parameters were compared and correlation analyses were performed. Multilinear stepwise regression was conducted to identify independent predictors of postoperative LL or TK. Regression analyses were repeated within the lumbar and thoracic fusion cohorts. Results: A total of 99 patients were included (mean age 63.2 years, 83.1% female, mean body mass index 27.3 kg/m2). Scoliosis Research Society classification demonstrated moderate to severe sagittal and/or coronal deformity (pelvic tile modifier, 18.2% ++; sagittal vertical axis, 27.3% ++, pelvic incidence minus lumbar lordosis mismatch, 29.3% ++, SRS type, 29.3% N type curve and 68.7% L or D type curve). A total of 73 patients (73.7%) underwent lumbar fusion and 50 (50.5%) underwent thoracic fusion. Correlation analyses demonstrated a significant association between pre- and postoperative LL and TK. Multilinear regression demonstrated that LL supine and pelvic incidence were significant predictors of postoperative LL ( r 2 = 0.568, P < .001). LL supine, TK supine, and age were significant predictors of postoperative TK ( r 2 = 0.490, P < .001). Conclusion: Preoperative supine films are superior to standing in predicting postoperative alignment at 1-year follow-up. Anticipation of undesired alignment changes through supine imaging may be useful in mitigating the risk of iatrogenic malalignment.


Sign in / Sign up

Export Citation Format

Share Document