scholarly journals Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: a comparison of intraoperative MRI– and MER-guided lead placement

2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yarema B. Bezchlibnyk ◽  
Vibhash D. Sharma ◽  
Kushal B. Naik ◽  
Faical Isbaine ◽  
John T. Gale ◽  
...  

OBJECTIVEDeep brain stimulation (DBS) lead placement is increasingly performed with the patient under general anesthesia by surgeons using intraoperative MRI (iMRI) guidance without microelectrode recording (MER) or macrostimulation. The authors assessed the accuracy of lead placement, safety, and motor outcomes in patients with Parkinson disease (PD) undergoing DBS lead placement into the globus pallidus internus (GPi) using iMRI or MER guidance.METHODSThe authors identified all patients with PD who underwent either MER- or iMRI-guided GPi-DBS lead placement at Emory University between July 2007 and August 2016. Lead placement accuracy and adverse events were determined for all patients. Clinical outcomes were assessed using the Unified Parkinson’s Disease Rating Scale (UPDRS) part III motor scores for patients completing 12 months of follow-up. The authors also assessed the levodopa-equivalent daily dose (LEDD) and stimulation parameters.RESULTSSeventy-seven patients were identified (MER, n = 28; iMRI, n = 49), in whom 131 leads were placed. The stereotactic accuracy of the surgical procedure with respect to the planned lead location was 1.94 ± 0.21 mm (mean ± SEM) (95% CI 1.54–2.34) with frame-based MER and 0.84 ± 0.007 mm (95% CI 0.69–0.98) with iMRI. The rate of serious complications was similar, at 6.9% for MER-guided DBS lead placement and 9.4% for iMRI-guided DBS lead placement (RR 0.71 [95% CI 0.13%–3.9%]; p = 0.695). Fifty-seven patients were included in clinical outcome analyses (MER, n = 16; iMRI, n = 41). Both groups had similar characteristics at baseline, although patients undergoing MER-guided DBS had a lower response on their baseline levodopa challenge (44.8% ± 5.4% [95% CI 33.2%–56.4%] vs 61.6% ± 2.1% [95% CI 57.4%–65.8%]; t = 3.558, p = 0.001). Greater improvement was seen following iMRI-guided lead placement (43.2% ± 3.5% [95% CI 36.2%–50.3%]) versus MER-guided lead placement (25.5% ± 6.7% [95% CI 11.1%–39.8%]; F = 5.835, p = 0.019). When UPDRS III motor scores were assessed only in the contralateral hemibody (per-lead analyses), the improvements remained significantly different (37.1% ± 7.2% [95% CI 22.2%–51.9%] and 50.0% ± 3.5% [95% CI 43.1%–56.9%] for MER- and iMRI-guided DBS lead placement, respectively). Both groups exhibited similar reductions in LEDDs (21.2% and 20.9%, respectively; F = 0.221, p = 0.640). The locations of all active contacts and the 2D radial distance from these to consensus coordinates for GPi-DBS lead placement (x, ±20; y, +2; and z, −4) did not differ statistically by type of surgery.CONCLUSIONSiMRI-guided GPi-DBS lead placement in PD patients was associated with significant improvement in clinical outcomes, comparable to those observed following MER-guided DBS lead placement. Furthermore, iMRI-guided DBS implantation produced a similar safety profile to that of the MER-guided procedure. As such, iMRI guidance is an alternative to MER guidance for patients undergoing GPi-DBS implantation for PD.

2020 ◽  
Vol 133 (5) ◽  
pp. 1582-1594 ◽  
Author(s):  
Vibhash D. Sharma ◽  
Yarema B. Bezchlibnyk ◽  
Faical Isbaine ◽  
Kushal B. Naik ◽  
Jennifer Cheng ◽  
...  

OBJECTIVELead placement for deep brain stimulation (DBS) using intraoperative MRI (iMRI) relies solely on real-time intraoperative neuroimaging to guide electrode placement, without microelectrode recording (MER) or electrical stimulation. There is limited information, however, on outcomes after iMRI-guided DBS for dystonia. The authors evaluated clinical outcomes and targeting accuracy in patients with dystonia who underwent lead placement using an iMRI targeting platform.METHODSPatients with dystonia undergoing iMRI-guided lead placement in the globus pallidus pars internus (GPi) were identified. Patients with a prior ablative or MER-guided procedure were excluded from clinical outcomes analysis. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores and Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores were assessed preoperatively and at 6 and 12 months postoperatively. Other measures analyzed include lead accuracy, complications/adverse events, and stimulation parameters.RESULTSA total of 60 leads were implanted in 30 patients. Stereotactic lead accuracy in the axial plane was 0.93 ± 0.12 mm from the intended target. Nineteen patients (idiopathic focal, n = 7; idiopathic segmental, n = 5; DYT1, n = 1; tardive, n = 2; other secondary, n = 4) were included in clinical outcomes analysis. The mean improvement in BFMDRS score was 51.9% ± 9.7% at 6 months and 63.4% ± 8.0% at 1 year. TWSTRS scores in patients with predominant cervical dystonia (n = 13) improved by 53.3% ± 10.5% at 6 months and 67.6% ± 9.0% at 1 year. Serious complications occurred in 6 patients (20%), involving 8 of 60 implanted leads (13.3%). The rate of serious complications across all patients undergoing iMRI-guided DBS at the authors’ institution was further reviewed, including an additional 53 patients undergoing GPi-DBS for Parkinson disease. In this expanded cohort, serious complications occurred in 11 patients (13.3%) involving 15 leads (10.1%).CONCLUSIONSIntraoperative MRI–guided lead placement in patients with dystonia showed improvement in clinical outcomes comparable to previously reported results using awake MER-guided lead placement. The accuracy of lead placement was high, and the procedure was well tolerated in the majority of patients. However, a number of patients experienced serious adverse events that were attributable to the introduction of a novel technique into a busy neurosurgical practice, and which led to the revision of protocols, product inserts, and on-site training.


2016 ◽  
Vol 124 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Zhiqiang Cui ◽  
Longsheng Pan ◽  
Huifang Song ◽  
Xin Xu ◽  
Bainan Xu ◽  
...  

OBJECT The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes. METHODS Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes. RESULTS Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients. CONCLUSIONS The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.


Neurosurgery ◽  
2020 ◽  
Vol 88 (1) ◽  
pp. 165-173
Author(s):  
Catherine H Moran ◽  
Mariusz Pietrzyk ◽  
Nagaraja Sarangmat ◽  
Carter S Gerard ◽  
Neil Barua ◽  
...  

ABSTRACT BACKGROUND Recent advances in methods used for deep brain stimulation (DBS) include subthalamic nucleus electrode implantation in the “asleep” patient without the traditional use of microelectrode recordings or intraoperative test stimulation. OBJECTIVE To examine the clinical outcome of patients who have undergone “asleep” DBS for the treatment of Parkinson disease using robot-assisted electrode delivery. METHODS This is a retrospective review of clinical outcomes of 152 consecutive patients. Their outcomes at 1 yr postimplantation are reported; these include Unified Parkinson's Disease Rating Scale (UPDRS) assessment, Tinetti Mobility Test, Parkinson's Disease Questionnaire (PDQ)-39 quality of life assessment, Mattis Dementia Rating Scale, Beck Depression Inventory, and Beck Anxiety. We also report on a new parietal trajectory for electrode implantation. RESULTS A total of 152 patients underwent assessment at 1 yr. UPDRS III improved from 39 to 20.5 (47%, P < .001). The total UPDRS score improved from 67.6 to 36.4 (46%, P < .001). UPDRS II scores improved from 18.9 to 10.5 (44%, P < .001) and UPDRS IV scores improved from 7.1 to 3.6 (49%, P < .001). There was a significant reduction in levodopa equivalent daily dose after surgery (mean: 35%, P < .001). PDQ-39 summary index improved by a mean of 7.1 points. There was no significant difference found in clinical outcomes between the frontal and parietal approaches. CONCLUSION “Asleep” robot-assisted DBS of the subthalamic nucleus demonstrates comparable outcomes with traditional techniques in the treatment of Parkinson disease.


Neurosurgery ◽  
2011 ◽  
Vol 69 (2) ◽  
pp. 357-361 ◽  
Author(s):  
Michael S. Okun ◽  
Samuel S. Wu ◽  
Kelly D. Foote ◽  
Dawn Bowers ◽  
Shilpa Gogna ◽  
...  

Abstract BACKGROUND: Deep brain stimulation (DBS) has been associated with mood sequelae in a subset of patients operated on in either the subthalamic nucleus or the globus pallidus internus for the treatment of Parkinson disease. OBJECTIVE: To compare mood and motor outcomes in those with and without a presurgical history of depression. METHODS: Unilateral subthalamic nucleus or unilateral globus pallidus internus DBS patients followed up for a minimum of 6 months were included. All patients underwent a comprehensive outpatient psychiatric evaluation by a board-certified psychiatrist. Psychiatric diagnoses were based on Diagnostic and Statistical Manual, fourth edition, text revision, nomenclature (American Psychiatric Association, 2000). Motor and mood outcomes were compared. RESULTS: A total of 110 patients were included. There were no significant differences in baseline variables between the 2 groups. Those with a preoperative history of depression had significantly higher Beck Depression Inventory scores than the nondepression group after DBS (8.97 ± 7.55 vs 5.92 ± 5.71; P = .04). Patients with a depression history had less improvement (11.6%) in pre/post-DBS change when Unified Parkinson Disease Rating Scale motor scores were compared (P = .03) after adjustment for stimulation site and baseline demographic and clinical variables. Patients with a higher levodopa equivalent dose had a worse clinical motor outcome. CONCLUSION: Patients with a preoperative depression history had higher Beck Depression Inventory scores after DBS and significantly less (albeit small) improvement in pre/post-DBS change in Unified Parkinson Disease Rating Scale motor scores than patients without a history of depression.


2019 ◽  
Vol 23 (02) ◽  
pp. 203-208 ◽  
Author(s):  
Aline Juliane Romann ◽  
Bárbara Costa Beber ◽  
Carla Aparecida Cielo ◽  
Carlos Roberto de Mello Rieder

Introduction Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function in individuals with Parkinson disease (PD). The evidence about the effects of STN-DBS on the voice is still inconclusive. Objective To verify the effect of STN-DBS on the voice of Brazilian individuals with PD. Methods Sixteen participants were evaluated on the Unified Parkinson Disease Rating Scale—Part III, and by the measurement of the acoustic modifications in on and off conditions of stimulation. Results The motor symptoms showed significant improvement with STN-DBS on. Regarding the acoustic measures of the voice, only the maximum fundamental frequency (fhi) showed a statistical difference between on- and off-conditions, with reduction in off-condition. Conclusion Changes in computerized acoustic measures are more valuable when interpreted in conjunction with changes in other measures. The single finding in fhi suggests that DBS-STN increases vocal instability. The interpretation of this result should be done carefully, since it may not be of great value if other measures that also indicate instability are not significantly different.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


2018 ◽  
Vol 130 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina M. Chapple ◽  
Margaret Lambert ◽  
Holly A. Shill ◽  
...  

OBJECTIVERecent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.METHODSPD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.RESULTSSix-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).CONCLUSIONSIn PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.


Author(s):  
Chencheng Zhang ◽  
Linbin Wang ◽  
Wei Hu ◽  
Tao Wang ◽  
Yijie Zhao ◽  
...  

Abstract BACKGROUND Subthalamic nucleus (STN) and globus pallidus interna (GPi) are the most effective targets in deep brain stimulation (DBS) treatment for Parkinson disease (PD). However, the individualized selection of targets remains a clinical challenge. OBJECTIVE To combine unilateral STN and contralateral GPi stimulation (STN DBS in one brain hemisphere and GPi DBS in the other) to maximize the clinical advantages of each target while inducing fewer adverse side effects in selected patients with PD because each target has its own clinical effects and risk profiles. METHODS We reviewed the clinical outcomes of 8 patients with idiopathic PD treated with combined unilateral STN and contralateral GPi DBS. Clinical outcome assessments, focusing on motor and nonmotor symptoms, were performed at baseline and 6-mo and 12-mo follow-up. We performed the assessments under the following conditions: medication on and off (bilateral stimulation on and off and unilateral STN stimulation on). RESULTS Patients showed a significant improvement in motor symptoms, as assessed by the Unified Parkinson Disease Rating Scale III (UPDRS-III) and Timed Up-and-Go Test (TUG), in the off-medication/on-stimulation state at 6-mo and 12-mo follow-up. Also, patients reported a better quality of life, and their intake of levodopa was reduced at 12-mo follow-up. In the on-medication condition, bilateral stimulation was associated with an improvement in axial symptoms, with a 64% improvement in measures of gait and falls at 12-mo follow-up. No irreversible adverse side effects were observed. CONCLUSION Our findings suggest that combined unilateral STN and contralateral GPi DBS could offer an effective and well-tolerated DBS treatment for certain PD patients.


Neurosurgery ◽  
2011 ◽  
Vol 70 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Han-Joon Kim ◽  
Beom S. Jeon ◽  
Jee-Young Lee ◽  
Sun Ha Paek ◽  
Dong Gyu Kim

Abstract BACKGROUND Pain is a well-recognized feature of Parkinson disease (PD), which is primarily a motor disorder. In a previous study, we showed that subthalamic deep brain stimulation (STN DBS) improves pain as well as motor symptoms 3 months after surgery in PD patients. OBJECTIVE To determine whether there is a long-term beneficial effect of STN DBS on pain in PD. METHODS We studied 21 patients with PD who underwent STN DBS. Motor symptoms were assessed using the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr staging. Pain was evaluated by asking patients about the quality and severity of pain in each body part. Evaluations were performed at baseline and at 3 and 24 months after surgery. RESULTS At baseline, 18 of the 21 patients (86%) experienced pain. After surgery, most of the pain reported at baseline had improved or disappeared at 3 months and improved further at 24 months. The benefit of STN DBS for pain evaluated at 24 months was comparable to that with medication at baseline. At 24 months, 9 patients (43%) reported new pain that was not present at baseline. Most of the new pain was musculoskeletal in quality. Despite the development of new pain, the mean pain score at follow-up was lower than at baseline. CONCLUSION STN DBS improves pain in PD, and this beneficial effect persists, being observed after a prolonged follow-up of 24 months. In addition, in many of the PD patients new, mainly musculoskeletal pain developed on longer follow-up.


Sign in / Sign up

Export Citation Format

Share Document