Postoperative hypertension in the management of patients with intracranial arterial aneurysms

1976 ◽  
Vol 45 (2) ◽  
pp. 148-154 ◽  
Author(s):  
Edward J. Kosnik ◽  
William E. Hunt

✓ Elevation of systemic arterial pressure in seven patients with intracranial arterial aneurysms has been shown to be effective in alleviating ischemic symptoms attributed to cerebral vasospasm. Autoregulation is at least partially lost in patients with cerebral hemodynamic crisis. Blood volume expansion was used to augment vasopressors in maintenance of systemic hypertension. The management of these cases is discussed. Caution in the use of this technique is advised, since the regimen is not without risk.


1992 ◽  
Vol 77 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Bruce I. Tranmer ◽  
Ted S. Keller ◽  
Glenn W. Kindt ◽  
David Archer

✓ Focal cerebral ischemia was induced in anesthetized macaque monkeys by unilateral middle cerebral artery occlusion. The effect of blood volume expansion by a colloid agent and subsequent exsanguination to baseline cardiac output (CO) on local cerebral blood flow (CBF) was measured by the hydrogen clearance technique in both ischemic and nonischemic brain regions. Cardiac output was increased to maximum levels (159% ± 92%, mean ± standard error of the mean) by blood volume expansion with the colloid agent hetastarch, and was then reduced a similar amount (166% ± 82%) by exsanguination during the ischemic period. Local CBF in ischemic brain regions varied directly with CO, with a correlation coefficient of 0.89 (% change CBF/% change CO), while CBF in nonischemic brain was not affected by upward or downward manipulations of CO. The difference in these responses between ischemic and nonischemic brain was highly significant (p < 0.001). The results of this study show a profound loss of regulatory control in ischemic brain in response to alterations in CO, thereby suggesting that blood volume variations may cause significant changes in the intensity of ischemia. It is proposed that CO monitoring and manipulation may be vital for optimum care of patients with acute cerebral ischemia.



1984 ◽  
Vol 246 (1) ◽  
pp. H74-H79 ◽  
Author(s):  
G. B. Guo ◽  
D. R. Richardson

The baroreflex control of hindquarter vascular resistance in response to a 30% blood volume expansion (BVE) was examined in constant-flow perfused hindlimbs of chloralose-urethan-anesthetized rats. Volume expansion initially increased both systemic arterial pressure (SAP) and central venous pressure (CVP) while decreasing hindquarter vascular resistance. After these initial changes, there was a parallel return of hindquarter-vascular resistance and CVP to pre-expansion levels, suggesting that cardiopulmonary afferents play a major role in the vascular resistance adjustments to volume expansion. This notion was supported in a separate set of experiments in which CVP was elevated selectively while SAP was held constant. This manipulation elicited a decrease in hindquarter vascular resistance, which was significantly attenuated following vagal cardiopulmonary denervation. The return of hindquarter vascular resistance following BVE also occurred in the presence of elevated SAP in rats with vagotomy and aortic nerve denervation, i.e., only the carotid sinus baroreflexes intact, but the time course was much faster compared with preparations with cardiopulmonary receptors intact. No response of hindquarter vascular resistance to BVE was observed in rats with both sinoaortic and cardiopulmonary baroreceptors denervated. These findings suggest that the return of hindquarter vascular resistance following BVE involves a gradual increase in sympathetic outflow to the hindquarters resulting from both a decrease in cardiopulmonary afferent activity and a rapid adaptation of arterial baroreflexes.



1972 ◽  
Vol 36 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Ralph A. W. Lehman ◽  
Theodore Krupin ◽  
Steven M. Podos

✓ Intracranial pressure was elevated acutely by inflation of an epidural balloon inside one side of the skull of monkeys. In most of the animals, intraocular pressure rose, beginning only after intracranial pressure had been elevated well above normal and continuing until the pressure in the expanding epidural balloon approached the level of the blood pressure. Thereafter intraocular pressure stabilized until it fell as vasomotor collapse ensued. The role of systemic arterial pressure elevations in the rising phase of intraocular pressure is thought to be less important than increases of ophthalmic venous pressure.



1987 ◽  
Vol 66 (4) ◽  
pp. 548-554 ◽  
Author(s):  
Seigo Nagao ◽  
Tsukasa Nishiura ◽  
Hideyuki Kuyama ◽  
Masakazu Suga ◽  
Takenobu Murota

✓ The authors report the results of a study to evaluate the effect of stimulation of the medullary reticular formation on cerebral vasomotor tonus and intracranial pressure (ICP) after the hypothalamic dorsomedial nucleus and midbrain reticular formation were destroyed. Systemic arterial pressure (BP), ICP, and local cerebral blood volume (CBV) were continuously recorded in 32 cats. To assess the changes in the cerebral vasomotor tonus, the vasomotor index defined by the increase in ICP per unit change in BP was calculated. In 29 of the 32 animals, BP, ICP, and CBV increased simultaneously immediately after stimulation. The increase in ICP was not secondary to the increase in BP, because the vasomotor index during stimulation was significantly higher than the vasomotor index after administration of angiotensin II. The vasomotor index was high during stimulation of the area around the nucleus reticularis parvocellularis. In animals with the spinal cord transected at the C-2 vertebral level, ICP increased without a change in BP. These findings indicate that the areas stimulated in the medullary reticular formation play an important role in decreasing cerebral vasomotor tonus. This effect was not influenced by bilateral superior cervical ganglionectomy, indicating that there is an intrinsic neural pathway that regulates cerebral vasomotor tonus directly. In three animals, marked biphasic or progressive increases in ICP up to 100 mm Hg were evoked by stimulation. The reduction of cerebral vasomotor tonus and concomitant vasopressor response induced by stimulation of the medullary reticular formation may be one of the causes of acute brain swelling.



1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.



1981 ◽  
Vol 241 (4) ◽  
pp. H571-H575 ◽  
Author(s):  
G. E. Billman ◽  
D. T. Dickey ◽  
K. K. Teoh ◽  
H. L. Stone

The purpose of this study was to investigate the effects of anesthesia, body position, and blood volume expansion on baroreflex control of heart rate. Five male rhesus monkeys (7.0-10.5 kg) were given bolus injection of 4.0 micrograms/kg phenylephrine during each of the following situations: awake sitting, anesthetized (AN) (10 mg/kg ketamine-HCl) sitting, AN recumbent, AN 90 degrees head down tilt, and AN 50% blood volume expansion with normal saline. beta-Receptor blockade was also performed on each treatment after anesthesia. Four additional animals were similarly treated after 20% blood volume expansion. R-R interval was plotted against systolic aortic pressure, and the slope was determined by linear regression. Baroreflex slope was significantly (P less than 0.05) reduced by 90 degrees head down tilt and 50% volume expansion both before and after beta-receptor blockade. A similar trend was seen after 20% volume expansion. These data are consistent with the thesis that baroreflex control of heart rate is reduced by central blood volume shifts.



1997 ◽  
Vol 30 (10) ◽  
pp. 1257-1256 ◽  
Author(s):  
J.R.V. Graça ◽  
F. de-A.A. Gondim ◽  
D.I.M. Cavalcante ◽  
J. Xavier-Neto ◽  
E.L.M. Messias ◽  
...  


1997 ◽  
Vol 83 (3) ◽  
pp. 695-699 ◽  
Author(s):  
Lars Bo Johansen ◽  
Thomas Ulrik Skram Jensen ◽  
Bettina Pump ◽  
Peter Norsk

Johansen, Lars Bo, Thomas Ulrik Skram Jensen, Bettina Pump, and Peter Norsk. Contribution of abdomen and legs to central blood volume expansion in humans during immersion. J. Appl. Physiol. 83(3): 695–699, 1997.—The hypothesis was tested that the abdominal area constitutes an important reservoir for central blood volume expansion (CBVE) during water immersion in humans. Six men underwent 1) water immersion for 30 min (WI), 2) water immersion for 30 min with thigh cuff inflation (250 mmHg) during initial 15 min to exclude legs from contributing to CBVE (WI+Occl), and 3) a seated nonimmersed control with 15 min of thigh cuff inflation (Occl). Plasma protein concentration and hematocrit decreased from 68 ± 1 to 64 ± 1 g/l and from 46.7 ± 0.3 to 45.5 ± 0.4% ( P < 0.05), respectively, during WI but were unchanged during WI+Occl. Left atrial diameter increased from 27 ± 2 to 36 ± 1 mm ( P < 0.05) during WI and increased similarly during WI+Occl from 27 ± 2 to 35 ± 1 mm ( P < 0.05). Central venous pressure increased from −3.7 ± 1.0 to 10.4 ± 0.8 mmHg during WI ( P < 0.05) but only increased to 7.0 ± 0.8 mmHg during WI+Occl ( P < 0.05). In conclusion, the dilution of blood induced by WI to the neck is caused by fluid from the legs, whereas the CBVE is caused mainly by blood from the abdomen.



Sign in / Sign up

Export Citation Format

Share Document