Magnetic resonance image—directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy

1995 ◽  
Vol 83 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Eben Alexander ◽  
Hanne M. Kooy ◽  
Marcel van Herk ◽  
Marc Schwartz ◽  
Patrick D. Barnes ◽  
...  

✓ Distortions of the magnetic field, such as those caused by susceptibility artifacts and peripheral magnetic field warping, can limit geometric precision in the use of magnetic resonance (MR) imaging in stereotactic procedures. The authors have routinely found systematic error in MR stereotactic coordinates with a median of 4 mm compared to computerized tomography (CT) coordinates. This error may place critical neural structures in jeopardy in some procedures. A description is given of an image fusion technique that uses a chamfer matching algorithm; the advantages of MR imaging in anatomical definition are combined with the geometric precision of CT, while eliminating most of the anatomical spatial distortion of stereotactic MR imaging. A stereotactic radiosurgical case is presented in which the use of MR localization alone would have led to both irradiation of vital neural structures outside the desired target volume and underdose of the intended target volume. The image fusion approach allows for the use of MR imaging, combined with stereotactic CT, as a reliable localizing technique for stereotactic neurosurgery and radiosurgery.

1999 ◽  
Vol 91 (6) ◽  
pp. 911-914 ◽  
Author(s):  
P. Richard Schuurman ◽  
Rob M. A. de Bie ◽  
Charles B. L. Majoie ◽  
Johannes D. Speelman ◽  
D. Andries Bosch

Object. The purpose of this prospective study was to compare stereotactic coordinates obtained with ventriculography with coordinates derived from stereotactic computer-reconstructed three-dimensional magnetic resonance (3D-MR) imaging in functional stereotactic procedures.Methods. In 15 consecutive patients undergoing functional stereotactic procedures, both preoperative frame-based stereotactic 3D-MR imaging and intraoperative ventriculography were performed. Differences between 3D-MR imaging and ventriculography in X, Y, and Z coordinates of the anterior commissure (AC), posterior commissure (PC), and target area were calculated, as well as the 3D distance between the position of AC, PC, and target within stereotactic space as obtained using both methods. The position of the stereotactic MR imaging fiducial markers measured using 3D-MR imaging compared well with the markers' known position embedded in the software (mean error 0.4 mm, maximal error for an individual slice 1.2 mm). For the individual coordinates, only for Y-PC was a difference found between 3D-MR imaging and ventriculography that significantly exceeded half the size of a pixel, the theoretical limit of precision when using a digitized imaging technique. However, the mean difference was smaller than 1 mm. The mean 3D distance between the 3D-MR imaging— and ventriculography-derived coordinates was 1.09 mm for AC, 1.13 mm for PC, and 1.29 mm for the targets.Conclusions. With these data it is shown that there is sufficient agreement between ventriculography-derived and 3D-MR imaging—derived stereotactic coordinates to justify the use of 3D-MR imaging target determination in frame-based functional stereotactic neurosurgery.


2003 ◽  
Vol 98 (3) ◽  
pp. 584-590 ◽  
Author(s):  
Tung T. Nguyen ◽  
Yashdip S. Pannu ◽  
Cynthia Sung ◽  
Robert L. Dedrick ◽  
Stuart Walbridge ◽  
...  

Object. Convection-enhanced delivery (CED), the delivery and distribution of drugs by the slow bulk movement of fluid in the extracellular space, allows delivery of therapeutic agents to large volumes of the brain at relatively uniform concentrations. This mode of drug delivery offers great potential for the treatment of many neurological disorders, including brain tumors, neurodegenerative diseases, and seizure disorders. An analysis of the treatment efficacy and toxicity of this approach requires confirmation that the infusion is distributed to the targeted region and that the drug concentrations are in the therapeutic range. Methods. To confirm accurate delivery of therapeutic agents during CED and to monitor the extent of infusion in real time, albumin-linked surrogate tracers that are visible on images obtained using noninvasive techniques (iopanoic acid [IPA] for computerized tomography [CT] and Gd—diethylenetriamine pentaacetic acid for magnetic resonance [MR] imaging) were developed and investigated for their usefulness as surrogate tracers during convective distribution of a macromolecule. The authors infused albumin-linked tracers into the cerebral hemispheres of monkeys and measured the volumes of distribution by using CT and MR imaging. The distribution volumes measured by imaging were compared with tissue volumes measured using quantitative autoradiography with [14C]bovine serum albumin coinfused with the surrogate tracer. For in vivo determination of tracer concentration, the authors examined the correlation between the concentration of the tracer in brain homogenate standards and CT Hounsfield units. They also investigated the long-term effects of the surrogate tracer for CT scanning, IPA-albumin, on animal behavior, the histological characteristics of the tissue, and parenchymal toxicity after cerebral infusion. Conclusions. Distribution of a macromolecule to clinically significant volumes in the brain is possible using convection. The spatial dimensions of the tissue distribution can be accurately defined in vivo during infusion by using surrogate tracers and conventional imaging techniques, and it is expected that it will be possible to determine local concentrations of surrogate tracers in voxels of tissue in vivo by using CT scanning. Use of imaging surrogate tracers is a practical, safe, and essential tool for establishing treatment volumes during high-flow interstitial microinfusion of the central nervous system.


1990 ◽  
Vol 72 (6) ◽  
pp. 971-974 ◽  
Author(s):  
John R. Ruge ◽  
Eric J. Russell ◽  
Robert M. Levy

✓ Three cases of ossification of the falx cerebri initially mistaken for vascular lesions based on their magnetic resonance (MR) appearance are reviewed. The MR imaging and computerized tomography characteristics of mineralization of the falx cerebri and their differentiation from interhemispheric vascular lesions are discussed.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 203-207 ◽  
Author(s):  
Stefan G. Scheib ◽  
Stefano Gianolini ◽  
Dieter Haller ◽  
Georgios N. Wellis ◽  
Jean Siegfried

In clinical follow-up studies after radiosurgery, imaging modalities such as computerized tomography (CT) and magnetic resonance (MR) imaging are used. Accurate determination of the residual lesion volume is necessary for realistic assessment of the effects of treatment. Usually, the diameters rather than the volume of the lesion are measured. To determine the lesion volume without using stereotactically defined images, the software program VOLUMESERIES has been developed. VOLUMESERIES is a personal computer—based image analysis tool. Acquired DICOM CT scans and MR image series can be visualized. The region of interest is contoured with the help of the mouse, and then the system calculates the volume of the contoured region and the total volume is given in cubic centimeters. The defined volume is also displayed in reconstructed sagittal and coronal slices. In addition, distance measurements can be performed to measure tumor extent. The accuracy of VOLUMESERIES was checked against stereotactically defined images in the Leksell GammaPlan treatment planning program. A discrepancy in target volumes of approximately 8% was observed between the two methods. This discrepancy is of lesser interest because the method is used to determine the course of the target volume over time, rather than the absolute volume. Moreover, it could be shown that the method was more sensitive than the tumor diameter measurements currently in use. VOLUMESERIES appears to be a valuable tool for assessing residual lesion volume on follow-up images after gamma knife radiosurgery while avoiding the need for stereotactic definition.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


1988 ◽  
Vol 68 (2) ◽  
pp. 246-250 ◽  
Author(s):  
Gene H. Barnett ◽  
Allan H. Ropper ◽  
Keith A. Johnson

✓ Magnetic resonance (MR) imaging has been largely restricted to patients who are neurologically and hemodynamically stable. The strong magnetic field and radiofrequency transmissions involved in acquiring images are potential sources of interference with monitoring equipment. A method of support and physiological monitoring of critically ill neurosurgical and neurological patients during MR imaging using a 0.6-tesla MR system is reported. This technique has not caused degradation of the MR image due to electrical interference. Adequate preparation and precautions allow many critically ill neurosurgical and neurological patients to safely undergo MR imaging.


1999 ◽  
Vol 91 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Faruk İldan ◽  
Metin Tuna ◽  
Alp İskender Göcer ◽  
Bülent Boyar ◽  
Hüseyin Bağdatoğlu ◽  
...  

Object. The authors examined the relationships of brain—tumor interfaces, specific magnetic resonance (MR) imaging features, and angiographic findings in meningiomas to predict tumor cleavage and difficulty of resection.Methods. Magnetic resonance imaging studies, angiographic data, operative reports, clinical data, and histopathological findings were examined retrospectively in this series, which included 126 patients with intracranial meningiomas who underwent operations in which microsurgical techniques were used. The authors have identified three kinds of brain—tumor interfaces characterized by various difficulties in microsurgical dissection: smooth type, intermediate type, and invasive type. The signal intensity on T1-weighted MR images was very similar regardless of the type of brain—tumor interface (p > 0.1). However, on T2-weighted images the different interfaces seemed to correlate very precisely with the signal intensity and the amount of peritumoral edema (p < 0.01), allowing the prediction of microsurgical effort required during surgery. On angiographic studies, the pial—cortical arterial supply was seen to participate almost equally with the meningeal—dural arterial supply in vascularizing the tumor in 57.9% of patients. Meningiomas demonstrating hypervascularization on angiography, particularly those fed by the pial—cortical arteries, exhibited significantly more severe edema compared with those supplied only from meningeal arteries (p < 0.01). Indeed, a positive correlation was found between the vascular supply from pial—cortical arteries and the type of cleavage (p < 0.05).Conclusions. In this analysis the authors proved that there is a strong correlation between the amount of peritumoral edema, hyperintensity of the tumor on T2-weighted images, cortical penetration, vascular supply from pial—cortical arteries, and cleavage of the meningioma. Therefore, the consequent difficulty of microsurgical dissection can be predicted preoperatively by analyzing MR imaging and angiographic studies.


1989 ◽  
Vol 70 (2) ◽  
pp. 274-276 ◽  
Author(s):  
Robert F. Traflet ◽  
Ashok R. Babaria ◽  
Giancarlo Barolat ◽  
H. T. Doan ◽  
Carlos Gonzalez ◽  
...  

✓ A case is presented in which a solitary chondroma arose from the clivus of a patient with Ollier's disease. These tumors are rare. The diagnostic value of computerized tomography and magnetic resonance imaging is discussed.


Sign in / Sign up

Export Citation Format

Share Document