Self-inflicted vocal cord paralysis in two patients with vagus nerve stimulators

2002 ◽  
Vol 96 (5) ◽  
pp. 949-951 ◽  
Author(s):  
James G. Kalkanis ◽  
Priya Krishna ◽  
Jose A. Espinosa ◽  
Dean K. Naritoku

✓ Vagus nerve stimulation for treatment of epilepsy is considered safe; reports of severe complications are rare. The authors report on two developmentally disabled patients who experienced vocal cord paralysis weeks after placement of a vagus nerve stimulator. In both cases, traction injury to the vagus nerve resulting in vocal cord paralysis was caused by rotation of the pulse generator at the subclavicular pocket by the patient. Traumatic vagus nerve injury caused by patients tampering with their device has never been reported and may be analogous to a similar phenomenon reported for cardiac pacemakers in the literature. As the use of vagus nerve stimulation becomes widespread it is important to consider the potential for this adverse event.

2020 ◽  
Vol 99 (7) ◽  

Introduction: Vagus nerve stimulation is a palliative treatment for patients with refractory epilepsy to reduce the frequency and intensity of seizures. A bipolar helical electrode is placed around the left vagus nerve at the cervical level and is connected to the pulse generator placed in a subcutaneous pocket, most commonly in the subclavian region. Methods: Between March 1998 and October 2019, we performed 196 procedures related to the vagal nerve stimulation at the Neurosurgery Department in Motol University Hospital. Of these, 126 patients were vagal nerve stimulator implantation surgeries for intractable epilepsy. The cases included 69 female and 57 male patients with mean age at the time of the implantation surgery 22±12.4 years (range 2.1−58.4 years). Results: Nine patients (7.1%) were afflicted by complications related to implantation. Surgical complications included postoperative infection in 1.6%, VNS-associated arrhythmias in 1.6%, jugular vein bleeding in 0.8% and vocal cord paresis in 2.4%. One patient with vocal cord palsy also suffered from severe dysphagia. One patient (0.8%) did not tolerate extra stimulation with magnet due to a prolonged spasm in his throat. The extra added benefit of vagus stimulation in one patient was a significant reduction of previously regular severe headaches. Conclusion: Vagus nerve stimulation is an appropriate treatment for patients with drug-resistant epilepsy who are not candidates for focal resective surgery. Implantation of the vagus nerve stimulator is a relatively safe operative procedure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Imad Libbus ◽  
Scott R. Stubbs ◽  
Scott T. Mazar ◽  
Scott Mindrebo ◽  
Bruce H. KenKnight ◽  
...  

Abstract Background Vagus Nerve Stimulation (VNS) delivers Autonomic Regulation Therapy (ART) for heart failure (HF), and has been associated with improvement in cardiac function and heart failure symptoms. VNS is delivered using an implantable pulse generator (IPG) and lead with electrodes placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on the VNS system. Methods DF testing was conducted on three ART IPGs (LivaNova USA, Inc.) according to international standard ISO14708-1, which evaluated whether DF had any permanent effects on the system. Each IPG was connected to a defibrillation pulse generator and subjected to a series of high-energy pulses. Results The specified series of pulses were successfully delivered to each of the three devices. All three IPGs passed factory electrical tests, and interrogation confirmed that software and data were unchanged from the pre-programmed values. No shifts in parameters or failures were observed. Conclusions Implantable VNS systems were tested for immunity to defibrillation, and were found to be unaffected by a series of high-energy defibrillation pulses. These results suggest that this VNS system can be used safely and continue to function after patients have been defibrillated.


1993 ◽  
Vol 78 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Howard J. Landy ◽  
R. Eugene Ramsay ◽  
Jeremy Slater ◽  
Roy R. Casiano ◽  
Robert Morgan

✓ Electrical stimulation of the vagus nerve has shown efficacy in controlling seizures in experimental models, and early clinical trials have suggested possible benefit in humans. Eleven patients with complex partial seizures were subjected to implantation of vagus nerve stimulators. Electrode contacts embedded in silicone rubber spirals were placed on the left vagus nerve in the low cervical area. A transcutaneously programmable stimulator module was placed in an infraclavicular subcutaneous pocket and connected to the electrode. One patient required replacement of the system due to electrode fracture. Another patient developed delayed ipsilateral vocal-cord paralysis; the technique was then modified to allow more tolerance for postoperative nerve edema. A third patient showed asymptomatic vocal-cord paresis on immediate postoperative laryngoscopy. Vagus nerve stimulation produces transient vocal-cord dysfunction while the current is on. Nine patients were randomly assigned to receive either high- or low-current stimulation, and seizure frequency was recorded. The high-current stimulation group showed a median reduction in seizure frequency of 27.7% compared to the preimplantation baseline, while the low-current stimulation group showed a median increase of 6.3%. This difference approached statistical significance. The entire population then received maximally tolerable stimulation. The high-current stimulation group showed a further 14.3% reduction, while the low-current stimulation group showed a 25.4% reduction compared to the blinded period. The efficacy of vagus nerve stimulation seemed to depend on stimulus parameters, and a cumulative effect was evident. These results are encouraging, and further study of this modality as an adjunct treatment for epilepsy is warranted.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Alice Noris ◽  
Paolo Roncon ◽  
Simone Peraio ◽  
Anna Zicca ◽  
Matteo Lenge ◽  
...  

BACKGROUND Vagus nerve stimulation (VNS) represents a valid therapeutic option for patients with medically intractable seizures who are not candidates for epilepsy surgery. Even when complete section of the nerve occurs, stimulation applied cranially to the involved nerve segment does not preclude the efficacy of VNS. Complete vagus nerve section with neuroma causing definitive left vocal cord palsy has never been previously reported in the literature. OBSERVATIONS Eight years after VNS implant, the patient experienced worsening of seizures; the interrogation of the generator revealed high impedance requiring surgical revision. On surgical exploration, complete left vagus nerve section and a neuroma were found. Vocal cord atrophy was found at immediate postoperative laryngeal inspection as a confirmation of a longstanding lesion. Both of these events might have been caused by direct nerve injury during VNS surgery, and they presented in a delayed fashion. LESSONS VNS surgery may be complicated by direct damage to the left vagus nerve, resulting in permanent neurological deficits. A complete section of the nerve also enables an efficacious stimulation if applied cranially to the involved segment. Laryngeal examination should be routinely performed before each VNS surgery to rule out preexisting vocal cord dysfunction.


2007 ◽  
Vol 107 (6) ◽  
pp. 519-520
Author(s):  
David Donahue ◽  
Rosa Sanchez ◽  
Angel Hernandez ◽  
Saleem Malik ◽  
C. Thomas Black ◽  
...  

2015 ◽  
Vol 122 (3) ◽  
pp. 532-535 ◽  
Author(s):  
Leslie C. Robinson ◽  
Ken R. Winston

OBJECT This investigation was done to examine, following implantation of vagus nerve stimulators, the relationship of vocal cord paralysis to the inner diameter of the coils used to attach the stimulator lead to the nerve. Methods All data in this investigation were collected, as mandated by the FDA, by the manufacturer of vagus nerve stimulators and were made available without restrictions for analysis by the authors. The data reflect all initial device implantations in the United States for the period from 1997 through 2012. Results Vocal cord paralysis was reported in 193 of 51,882 implantations. In patients aged 18 years and older, the incidence of paralysis was 0.26% when the stimulator leads had coil diameters of 3 mm and 0.51% when the leads had 2-mm-diameter coils (p < 0.05). Across all age groups, the incidence of vocal cord paralysis increased with age at implantation for leads having 2-mm-diameter coils. Conclusions In patients aged 18 years and older, vocal cord paralysis occurred at almost twice the rate with the implantation of vagus nerve stimulator leads having 2-mm-diameter coils than with leads having 3-mm-diameter coils. The incidence of vocal cord paralysis increases with patient age at implantation.


Author(s):  
Imad Libbus ◽  
Scott R. Stubbs ◽  
Scott T. Mazar ◽  
Scott Mindrebo ◽  
Bruce H. KenKnight ◽  
...  

Abstract Purpose Autonomic regulation therapy (ART) for heart failure (HF) is delivered using vagus nerve stimulation (VNS), and has been associated with improvement in cardiac function and HF symptoms. VNS is delivered using an implantable pulse generator (IPG) and a lead placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on VNS system performance. Methods Normal swine (n = 4) with VNS system implants on the right cervical vagus nerve received sequential defibrillation shocks with three defibrillation systems: an implantable cardioverter defibrillator (ICD), a subcutaneous ICD (S-ICD), and an external cardioverter defibrillator (ECD). Each system delivered a series of bipolar high-energy shocks and reverse-polarity high-energy shocks. Results The specified cardiac defibrillation shocks were delivered successfully from each of the three defibrillation systems to all animals. After each shock series, interrogation of the IPG confirmed that software and data were unchanged from pre-programmed values. After all of the defibrillation shocks were delivered, the IPGs underwent and passed comprehensive electrical testing demonstrating proper system function. No shifts in IPG parameters or ART system failures were observed, and histologic evaluation of the vagus nerve revealed no anatomic changes. Conclusions Implantable VNS systems were tested in vivo for immunity to defibrillation via ICD, S-ICD, and ECD, and were found to be unaffected by a series of high-energy defibrillation shocks. These results confirm that ART systems are capable of continuing to function after defibrillation and the cervical vagus nerve is anatomically unaffected.


Author(s):  
Bhupendra Chaudhary ◽  
Ansh Chaudhary

Vagus Nerve Stimulation (VNS) an efficacious neurophysiological modality of treatment for both medically & surgically refractory epilepsy was first implanted in 1988 & later approved by US FDA in 1997. In clinical practice, trains of current are applied intermittently to the left vagus using a pacemaker or AICD like device 'the VNS device'. The device has four components pulse generator, lead, spiral electrodes & a magnet. The pulse generator is implanted beneath left clavicle by a simple surgical method & attached to left vagus nerve via lead & spiral electrodes.[1] The magnet provides an extra edge to control the aura or impending seizure by providing 'On Demand' stimulations. The poor cardiac innervation by left vagus helps to minimize the unwanted or at time dangerous side effects like severe bradycardia, brady arrythmia, or even cardiac asystole.[2]  


2003 ◽  
Vol 99 (3) ◽  
pp. 500-503 ◽  
Author(s):  
Matthew D. Smyth ◽  
R. Shane Tubbs ◽  
E. Martina Bebin ◽  
Paul A. Grabb ◽  
Jeffrey P. Blount

Object. The aim of this study was to define better the incidence of surgical complications and untoward side effects of chronic vagus nerve stimulation (VNS) in a population of children with medically refractory epilepsy. Methods. The authors retrospectively reviewed the cases of 74 consecutive patients (41 male and 33 female) 18 years of age or younger (mean age 8.8 years, range 11 months–18 years) who had undergone implantation of a vagal stimulator between 1998 and 2001 with a minimum follow up of 1 year (mean 2.2 years). Of the 74 patients treated, seven (9.4%) had a complication ultimately resulting in removal of the stimulator. The rate of deep infections necessitating device removal was 3.5% (three of 74 patients who had undergone 85 implantation and/or revision procedures). An additional three superficial infections occurred in patients in whom the stimulators were not removed: one was treated with superficial operative debridement and antibiotic agents and the other two with oral antibiotics only. Another four stimulators (5.4%) were removed because of the absence of clinical benefit and device intolerance. Two devices were revised because of lead fracture (2.7%). Among the cohort, 11 battery changes have been performed thus far, although none less than 33 months after initial implantation. Several patients experienced stimulation-induced symptoms (hoarseness, cough, drooling, outbursts of laughter, shoulder abduction, dysphagia, or urinary retention) that did not require device removal. Ipsilateral vocal cord paralysis was identified in one patient. One patient died of aspiration pneumonia more than 30 days after device implantation. Conclusions. Vagus nerve stimulation remains a viable option for improving seizure control in difficult to treat pediatric patients with epilepsy. Surgical complications such as hardware failure (2.7%) or deep infection (3.5%) occurred, resulting in device removal or revision. Occasional stimulation-induced symptoms such as hoarseness, dysphagia, or torticollis may be expected (5.4%).


Sign in / Sign up

Export Citation Format

Share Document