Preservation of a subcutaneous pocket for vagus nerve stimulation pulse generator during magnetoencephalography

2007 ◽  
Vol 107 (6) ◽  
pp. 519-520
Author(s):  
David Donahue ◽  
Rosa Sanchez ◽  
Angel Hernandez ◽  
Saleem Malik ◽  
C. Thomas Black ◽  
...  
2020 ◽  
Vol 99 (7) ◽  

Introduction: Vagus nerve stimulation is a palliative treatment for patients with refractory epilepsy to reduce the frequency and intensity of seizures. A bipolar helical electrode is placed around the left vagus nerve at the cervical level and is connected to the pulse generator placed in a subcutaneous pocket, most commonly in the subclavian region. Methods: Between March 1998 and October 2019, we performed 196 procedures related to the vagal nerve stimulation at the Neurosurgery Department in Motol University Hospital. Of these, 126 patients were vagal nerve stimulator implantation surgeries for intractable epilepsy. The cases included 69 female and 57 male patients with mean age at the time of the implantation surgery 22±12.4 years (range 2.1−58.4 years). Results: Nine patients (7.1%) were afflicted by complications related to implantation. Surgical complications included postoperative infection in 1.6%, VNS-associated arrhythmias in 1.6%, jugular vein bleeding in 0.8% and vocal cord paresis in 2.4%. One patient with vocal cord palsy also suffered from severe dysphagia. One patient (0.8%) did not tolerate extra stimulation with magnet due to a prolonged spasm in his throat. The extra added benefit of vagus stimulation in one patient was a significant reduction of previously regular severe headaches. Conclusion: Vagus nerve stimulation is an appropriate treatment for patients with drug-resistant epilepsy who are not candidates for focal resective surgery. Implantation of the vagus nerve stimulator is a relatively safe operative procedure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Imad Libbus ◽  
Scott R. Stubbs ◽  
Scott T. Mazar ◽  
Scott Mindrebo ◽  
Bruce H. KenKnight ◽  
...  

Abstract Background Vagus Nerve Stimulation (VNS) delivers Autonomic Regulation Therapy (ART) for heart failure (HF), and has been associated with improvement in cardiac function and heart failure symptoms. VNS is delivered using an implantable pulse generator (IPG) and lead with electrodes placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on the VNS system. Methods DF testing was conducted on three ART IPGs (LivaNova USA, Inc.) according to international standard ISO14708-1, which evaluated whether DF had any permanent effects on the system. Each IPG was connected to a defibrillation pulse generator and subjected to a series of high-energy pulses. Results The specified series of pulses were successfully delivered to each of the three devices. All three IPGs passed factory electrical tests, and interrogation confirmed that software and data were unchanged from the pre-programmed values. No shifts in parameters or failures were observed. Conclusions Implantable VNS systems were tested for immunity to defibrillation, and were found to be unaffected by a series of high-energy defibrillation pulses. These results suggest that this VNS system can be used safely and continue to function after patients have been defibrillated.


2002 ◽  
Vol 96 (5) ◽  
pp. 949-951 ◽  
Author(s):  
James G. Kalkanis ◽  
Priya Krishna ◽  
Jose A. Espinosa ◽  
Dean K. Naritoku

✓ Vagus nerve stimulation for treatment of epilepsy is considered safe; reports of severe complications are rare. The authors report on two developmentally disabled patients who experienced vocal cord paralysis weeks after placement of a vagus nerve stimulator. In both cases, traction injury to the vagus nerve resulting in vocal cord paralysis was caused by rotation of the pulse generator at the subclavicular pocket by the patient. Traumatic vagus nerve injury caused by patients tampering with their device has never been reported and may be analogous to a similar phenomenon reported for cardiac pacemakers in the literature. As the use of vagus nerve stimulation becomes widespread it is important to consider the potential for this adverse event.


Author(s):  
Imad Libbus ◽  
Scott R. Stubbs ◽  
Scott T. Mazar ◽  
Scott Mindrebo ◽  
Bruce H. KenKnight ◽  
...  

Abstract Purpose Autonomic regulation therapy (ART) for heart failure (HF) is delivered using vagus nerve stimulation (VNS), and has been associated with improvement in cardiac function and HF symptoms. VNS is delivered using an implantable pulse generator (IPG) and a lead placed around the cervical vagus nerve. Because HF patients may receive concomitant cardiac defibrillation therapy, testing was conducted to determine the effect of defibrillation (DF) on VNS system performance. Methods Normal swine (n = 4) with VNS system implants on the right cervical vagus nerve received sequential defibrillation shocks with three defibrillation systems: an implantable cardioverter defibrillator (ICD), a subcutaneous ICD (S-ICD), and an external cardioverter defibrillator (ECD). Each system delivered a series of bipolar high-energy shocks and reverse-polarity high-energy shocks. Results The specified cardiac defibrillation shocks were delivered successfully from each of the three defibrillation systems to all animals. After each shock series, interrogation of the IPG confirmed that software and data were unchanged from pre-programmed values. After all of the defibrillation shocks were delivered, the IPGs underwent and passed comprehensive electrical testing demonstrating proper system function. No shifts in IPG parameters or ART system failures were observed, and histologic evaluation of the vagus nerve revealed no anatomic changes. Conclusions Implantable VNS systems were tested in vivo for immunity to defibrillation via ICD, S-ICD, and ECD, and were found to be unaffected by a series of high-energy defibrillation shocks. These results confirm that ART systems are capable of continuing to function after defibrillation and the cervical vagus nerve is anatomically unaffected.


Author(s):  
Bhupendra Chaudhary ◽  
Ansh Chaudhary

Vagus Nerve Stimulation (VNS) an efficacious neurophysiological modality of treatment for both medically & surgically refractory epilepsy was first implanted in 1988 & later approved by US FDA in 1997. In clinical practice, trains of current are applied intermittently to the left vagus using a pacemaker or AICD like device 'the VNS device'. The device has four components pulse generator, lead, spiral electrodes & a magnet. The pulse generator is implanted beneath left clavicle by a simple surgical method & attached to left vagus nerve via lead & spiral electrodes.[1] The magnet provides an extra edge to control the aura or impending seizure by providing 'On Demand' stimulations. The poor cardiac innervation by left vagus helps to minimize the unwanted or at time dangerous side effects like severe bradycardia, brady arrythmia, or even cardiac asystole.[2]  


2019 ◽  
Vol 24 (6) ◽  
pp. 674-683
Author(s):  
Ya. I. Poleshchenko ◽  
D. A. Oleynikov ◽  
V. Yu. Lukichev ◽  
D. A. Khromikhin ◽  
M. A. Krylova ◽  
...  

Background.Vagus nerve stimulation has been proposed for the treatment of a number of diseases. The positive effects of vagus nerve stimulation on ischemic and reperfusion myocardial injury has been tested in experimental models. However, the escape effect of vagus activation on heart rate and the methodology to overcome this effect have not been reported properly.Objective. The purpose of the study is to evaluate parameters of prolonged stimulation that decrease heart rate and allow overcoming the escape effect of vagus nerve activation.Design and methods. We used Wistar rats (n = 9). Cervical section was performed under general anesthesia. Left vagus nerve isolated from adjacent tissue was contacted with custom stimulation electrodes and a custom pulse generator. Blood pressure was measured in the right common carotid artery. Limb electrocardiogram was continuously recorded. First, stimulation parameters repeatedly evoking vagal reaction (decrease in heart rate) without nerve damage were evaluated. Second, parameters of intermittent stimulation that allowed repeat and consistent heart rate decrease were assessed.Results. During experiments, in 5 animals the following parameters leading to sustained 30 ± 20 % heart rate reduction were found: rectangular pulse, 30 Hz, 0,5 ms, 1–2 V (0,6– 0,8 mA). Stimulation with 50 Hz frequency led to nerve damage in 1 case. Stimulation with 20 Hz frequency led to heart rate over-suppression of heart rate and blood pressure. Intermittent nerve stimulation was tested in 4 animals and led to repeated heart rate decrease by 38 ± 15 %. The parameters which helped to avoid escape effect on heart rate change were the following: the length of stimulation episode of 45 s and interruption of stimulation for 15 s.Conclusion. Intermittent electrical stimulation evokes vagal reactions on heart rate and allows overcoming the escape effect of vagal activation. 


2019 ◽  
Vol 28 (4) ◽  
pp. 1381-1387
Author(s):  
Ying Yuan ◽  
Jie Wang ◽  
Dongyu Wu ◽  
Dahua Zhang ◽  
Weiqun Song

Purpose Severe dysphagia with weak pharyngeal peristalsis after dorsal lateral medullary infarction (LMI) requires long-term tube feeding. However, no study is currently available on therapeutic effectiveness in severe dysphagia caused by nuclear damage of vagus nerve after dorsal LMI. The purpose of the present investigation was to explore the potential of transcutaneous vagus nerve stimulation (tVNS) to improve severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Method We assessed the efficacy of 6-week tVNS in a 28-year-old woman presented with persisting severe dysphagia after dorsal LMI who had been on nasogastric feeding for 6 months. tVNS was applied for 20 min twice a day, 5 days a week, for 6 weeks. The outcome measures included saliva spitted, Swallow Function Scoring System, Functional Oral Intake Scale, Clinical Assessment of Dysphagia With Wallenberg Syndrome, Yale Pharyngeal Residue Severity Rating Scale, and upper esophagus X-ray examination. Results After tVNS, the patient was advanced to a full oral diet without head rotation or spitting. No saliva residue was found in the valleculae and pyriform sinuses. Contrast medium freely passed through the upper esophageal sphincter. Conclusion Our findings suggest that tVNS might provide a useful means for recovery of severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Supplemental Material https://doi.org/10.23641/asha.9755438


Sign in / Sign up

Export Citation Format

Share Document