scholarly journals Morphologic Evolution and Coordinated Development of the Fetal Lateral Ventricles in the Second and Third Trimesters

Author(s):  
Z. Li ◽  
F. Xu ◽  
Z. Zhang ◽  
X. Lin ◽  
G. Teng ◽  
...  
1995 ◽  
Vol 32 (1) ◽  
pp. 51
Author(s):  
Young Min Han ◽  
Ki Chul Choi ◽  
Chong Soo Kim ◽  
See Sung Choi ◽  
Gyung Ho Chung ◽  
...  

2019 ◽  
Vol 24 (6) ◽  
pp. 652-662 ◽  
Author(s):  
Marc Oria ◽  
Soner Duru ◽  
Federico Scorletti ◽  
Fernando Vuletin ◽  
Jose L. Encinas ◽  
...  

OBJECTIVEThe authors hypothesized that new agents such as BioGlue would be as efficacious as kaolin in the induction of hydrocephalus in fetal sheep.METHODSThis study was performed in 34 fetal lambs randomly divided into 2 studies. In the first study, fetuses received kaolin, BioGlue (2.0 mL), or Onyx injected into the cisterna magna, or no injection (control group) between E85 and E90. In the second study, fetuses received 2.0-mL or 2.5-mL injections of BioGlue into the cisterna magna between E85 and E90. Fetuses were monitored using ultrasound to assess lateral ventricle size and progression of hydrocephalus. The fetuses were delivered (E120–E125) and euthanized for histological analysis. Selected brain sections were stained for ionized calcium binding adaptor 1 (Iba1) and glial fibrillary acidic protein (GFAP) to assess the presence and activation of microglia and astroglia, respectively. Statistical comparisons were performed with Student’s t-test for 2 determinations and ANOVA 1-way and 2-way repeated measures for multiple determinations.RESULTSAt 30 days after injection, the lateral ventricles were larger in all 3 groups that had undergone injection than in controls (mean diameter in controls 3.76 ± 0.05 mm, n = 5). However, dilatation was greater in the fetuses injected with 2 mL of BioGlue (11.34 ± 4.76 mm, n = 11) than in those injected with kaolin (6.4 ± 0.98 mm, n = 7) or Onyx (5.7 ± 0.31 mm, n = 6) (ANOVA, *p ≤ 0.0001). Fetuses injected with 2.0 mL or 2.5 mL of BioGlue showed the same ventricle dilatation but it appeared earlier (at 10 days postinjection) in those injected with 2.5 mL. The critical threshold of ventricle dilatation was 0.1 for all the groups, and only the BioGlue 2.0 mL and BioGlue 2.5 mL groups exceeded this critical value (at 30 days and 18 days after injection, respectively) (ANOVA, *p ≤ 0.0001). Moderate to severe hydrocephalus with corpus callosum disruption was observed in all experimental groups. All experimental groups showed ventriculomegaly with significant microgliosis and astrogliosis in the subventricular zone around the lateral ventricles. Only kaolin resulted in significant microgliosis in the fourth ventricle area (ANOVA, *p ≤ 0.005).CONCLUSIONSThe results of these studies demonstrate that BioGlue is more effective than Onyx or kaolin for inducing hydrocephalus in the fetal lamb and results in a volume-related response by obstructive space-occupancy without local neuroinflammatory reaction. This novel use of BioGlue generates a model with potential for new insights into hydrocephalus pathology and the development of therapeutics in obstructive hydrocephalus. In addition, this model allows for the study of acute and chronic obstructive hydrocephalus by using different BioGlue volumes for intracisternal injection.


2019 ◽  
Vol 8 (4) ◽  
pp. 9461-9464

Current quantum computer simulation strategies are inefficient in simulation and their realizations are also failed to minimize those impacts of the exponential complexity for simulated quantum computations. We proposed a Quantum computer simulator model in this paper which is a coordinated Development Environment – QuIDE (Quantum Integrated Development Environment) to support the improvement of algorithm for future quantum computers. The development environment provides the circuit diagram of graphical building and flexibility of source code. Analyze the complexity of algorithms shows the performance results of the simulator and used for simulation as well as result of its deployment during simulation


2016 ◽  
Author(s):  
Nicholas S. Smith ◽  
◽  
Samuel Zamora ◽  
Imran Alexander Rahman ◽  
Bradley Deline

Sign in / Sign up

Export Citation Format

Share Document