postmortem brain tissue
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 65)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lester J. Rosario-Rodríguez ◽  
Yamil Gerena ◽  
Luis A. García-Requena ◽  
Luz J. Cartagena-Isern ◽  
Juan C. Cuadrado-Ruiz ◽  
...  

AbstractHIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.


2021 ◽  
Author(s):  
Thomas G Beach ◽  
Michael DeTure ◽  
Jessica E Walker ◽  
Richard Arce ◽  
Michael J Glass ◽  
...  

The coronavirus SARS-CoV-2 causes COVID-19, a predominantly respiratory disease that has been reported to be associated with numerous neurological signs, symptoms and syndromes. More than 20 published studies have used RT-PCR methods to determine viral SARS-CoV-2 genomic presence in postmortem brain tissue and the overall impression is that viral brain invasion is relatively uncommon and occurs in low copy numbers, supporting indirect mechanisms as the cause of most neurological phenomena. Hypoxic-ischemic brain injury and stroke are one such possible indirect mechanism, as acute ischemia or stroke concurrence with COVID-19 has been reported as being 0.5% to 20%. Immunohistochemical stains for beta-amyloid precursor protein (APP) have been suggested to be a signature change of hypoxic leukoencephalopathy or COVID-19 brain disease, although prior reports have not had a non-COVID-19 control group. We therefore compared the prevalence and intensity of white matter APP staining in the brains of subjects dying with and without COVID-19. Clinical and neuropathological results, including semi-quantitative assessment of the density of white matter APP staining, were compared between 20 COVID-19 cases and 20 pre-COVID-19 autopsy cases, including 10 cases with autopsy-proven non-COVID-19 pneumonia and 10 cases without pneumonia. Positive APP white matter staining in at least one of the two brain regions (precentral gyrus and cingulate gyrus) studied was not significantly more common in COVID-19 vs controls (14/20 vs 12/20). Comparing density scores from both brain regions combined, the mean scores for COVID-19 cases were higher than those for controls of both types together but not significantly different when restricting to controls with pneumonia. Among control cases, cases with pneumonia had significantly higher scores. The presence or absence of a major neuropathologically-defined neurodegenerative disorder did not significantly affect the APP scores. The major finding is that while APP white matter staining cannot be regarded as a specific marker of COVID-19, as it does not occur with significantly greater probability in in COVID-19 brains as compared to non-COVID-19 brains, it is possible that white matter APP staining, representing acute or subacute axonal damage, may be a common occurrence in the perimortem period, and that it may be more intense in subjects dying with pneumonia, regardless of cause.


2021 ◽  
Author(s):  
Orna Issler ◽  
Yentl Y van der Zee ◽  
Aarthi Ramakrishnan ◽  
Sunhui Xia ◽  
Alexander K Zinsmaier ◽  
...  

Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify dramatic baseline sex differences in expression of long noncoding RNAs (lncRNAs) in human postmortem brain tissue that are profoundly lost in depression. One such lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and upregulated in several cortical regions of depressed females but not males. We found that virally-expressing FEDORA selectively either in neurons or in oligodendrocytes of prefrontal cortex promoted depression-like behavioral abnormalities in female mice only, changes associated with cell-type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic significance for depressed women. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.


2021 ◽  
Vol 15 ◽  
Author(s):  
Justin L. Balsor ◽  
Keon Arbabi ◽  
Desmond Singh ◽  
Rachel Kwan ◽  
Jonathan Zaslavsky ◽  
...  

Studying the molecular development of the human brain presents unique challenges for selecting a data analysis approach. The rare and valuable nature of human postmortem brain tissue, especially for developmental studies, means the sample sizes are small (n), but the use of high throughput genomic and proteomic methods measure the expression levels for hundreds or thousands of variables [e.g., genes or proteins (p)] for each sample. This leads to a data structure that is high dimensional (p ≫ n) and introduces the curse of dimensionality, which poses a challenge for traditional statistical approaches. In contrast, high dimensional analyses, especially cluster analyses developed for sparse data, have worked well for analyzing genomic datasets where p ≫ n. Here we explore applying a lasso-based clustering method developed for high dimensional genomic data with small sample sizes. Using protein and gene data from the developing human visual cortex, we compared clustering methods. We identified an application of sparse k-means clustering [robust sparse k-means clustering (RSKC)] that partitioned samples into age-related clusters that reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the genes or proteins contributing to partitioning samples into age-related clusters that progress across the lifespan. This approach addresses a problem in current studies that could not identify multiple postnatal clusters. Moreover, clusters encompassed a range of ages like a series of overlapping waves illustrating that chronological- and brain-age have a complex relationship. In addition, a recently developed workflow to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and revealed neurobiologically relevant features that identified how the human visual cortex changes across the lifespan. These methods can help address the growing demand for multimodal integration, from molecular machinery to brain imaging signals, to understand the human brain’s development.


2021 ◽  
Vol 13 ◽  
Author(s):  
Francesca Malerba ◽  
Ivan Arisi ◽  
Rita Florio ◽  
Chiara Zecca ◽  
Maria Teresa Dell'Abate ◽  
...  

The discovery of new biomarkers for Alzheimer's disease (AD) is essential for an accurate diagnosis, to conceive new strategies of treatments, and for monitoring the efficacy of potential disease-modifying therapies in clinical trials. proNGF levels in the cerebrospinal fluid (CSF) represent a promising diagnostic biomarker for AD, but its validation was hampered by the absence of a reliable immunoassay. In the literature, proNGF is currently measured in postmortem brain tissue by semiquantitative immunoblot. Here we describe the development and validation of a new method to measure proNGF in the CSF of living patients. This method, based on molecular size separation by capillary electrophoresis, is automated and shows a 40-fold increase in sensitivity with respect to the proNGF immunoblot, largely used in literature, and is robust, specific, and scalable to high-throughput. We have measured proNGF in the cerebrospinal fluid of 84 living patients with AD, 13 controls, and 15 subjective memory complaints (SMC) subjects. By comparing the proNGF levels in the three groups, we found a very significant difference between proNGF levels in AD samples compared with both controls and SMC subjects, while no significant difference was found between SMC and controls. Because of the development of this new immunoassay, we are ready to explore the potentiality of proNGF as a new biomarker for AD or subgroups thereof, as well as for other neurodegenerative diseases.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lei Yu ◽  
Zhiguang Huo ◽  
Jingyun Yang ◽  
Helena Palma-Gudiel ◽  
Patricia A. Boyle ◽  
...  

Glycosylation, the process of adding glycans (i.e., sugars) to proteins, is the most abundant post-translational modification. N-glycosylation is the most common form of glycosylation, and the N-glycan moieties play key roles in regulating protein functions and many other biological processes. Thus, identification and quantification of N-glycome (complete repertoire of all N-glycans in a sample) may provide new sources of biomarkers and shed light on health and disease. To date, little is known about the role of altered N-glycome in Alzheimer’s Disease and Alzheimer’s Disease-related Dementias (AD/ADRD). The current study included 45 older adults who had no cognitive impairment (NCI) at baseline, followed and examined annually, and underwent brain autopsy after death. During about 12-year follow-up, 15 developed mild cognitive impairment (MCI), 15 developed AD, and 15 remained NCI. Relative abundances of N-glycans in serum at 2 time points (baseline and proximate to death, ∼12.3 years apart) and postmortem brain tissue (dorsolateral prefrontal cortex) were quantified using MALDI-TOF-MS. Regression models were used to test the associations of N-glycans with AD/ADRD phenotypes. We detected 71 serum and 141 brain N-glycans, of which 46 were in common. Most serum N-glycans had mean fold changes less than one between baseline and proximate to death. The cross-tissue N-glycan correlations were weak. Baseline serum N-glycans were more strongly associated with AD/ADRD compared to change in serum N-glycans over time and brain N-glycans. The N-glycan associations were observed in both AD and non-AD neuropathologies. To our knowledge, this is the first comprehensive glycomic analysis in both blood and brain in relation to AD pathology. Our results suggest that altered N-glycans may serve as mechanistic biomarkers for early diagnosis and progression of AD/ADRD.


2021 ◽  
Author(s):  
Megan Allen ◽  
Ben S. Huang ◽  
Michael J. Notaras ◽  
Aiman Lodhi ◽  
Estibaliz Barrio Alonso ◽  
...  

AbstractThe cellular mechanisms of Autism Spectrum Disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes play in several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD patients. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we strategically combined stem cell culturing with transplantation techniques to determine disease specific properties inherent to patient derived astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, we determine that ASD patient astrocytes are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yolpanhchana Lim ◽  
Jennifer E. Beane-Ebel ◽  
Yoshiaki Tanaka ◽  
Boting Ning ◽  
Christopher R. Husted ◽  
...  

AbstractTranscriptomic changes in specific brain regions can influence the risk of alcohol use disorder (AUD), but the underlying mechanism is not fully understood. We investigated AUD-associated miRNA–mRNA regulatory networks in multiple brain regions by analyzing transcriptomic changes in two sets of postmortem brain tissue samples and ethanol-exposed human embryonic stem cell (hESC)-derived cortical interneurons. miRNA and mRNA transcriptomes were profiled in 192 tissue samples (Set 1) from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control European Australians. Nineteen differentially expressed miRNAs (fold-change>2.0 & P < 0.05) and 97 differentially expressed mRNAs (fold-change>2.0 & P < 0.001) were identified in one or multiple brain regions of AUD subjects. AUD-associated miRNA–mRNA regulatory networks in each brain region were constructed using differentially expressed and negatively correlated miRNA–mRNA pairs. AUD-relevant pathways (including CREB Signaling, IL-8 Signaling, and Axonal Guidance Signaling) were potentially regulated by AUD-associated brain miRNA–mRNA pairs. Moreover, miRNA and mRNA transcriptomes were mapped in additional 96 tissue samples (Set 2) from six of the above eight brain regions of eight AUD and eight control European Australians. Some of the AUD-associated miRNA–mRNA regulatory networks were confirmed. In addition, miRNA and mRNA transcriptomes were analyzed in hESC-derived cortical interneurons with or without ethanol exposure, and ethanol-influenced miRNA–mRNA regulatory networks were constructed. This study provided evidence that alcohol could induce concerted miRNA and mRNA expression changes in reward-related or alcohol-responsive brain regions. We concluded that altered brain miRNA–mRNA regulatory networks might contribute to AUD development.


Sign in / Sign up

Export Citation Format

Share Document