Conceptual design framework supported by dimensional analysis and System Modelling Language

2008 ◽  
Vol 57 (4) ◽  
pp. 303 ◽  
Author(s):  
F Christophe ◽  
R Sell ◽  
E Coatanéa
Author(s):  
Ørnulf Jan Rødseth ◽  
Lars Andreas Lien Wennersberg ◽  
Håvard Nordahl

AbstractCurrent guidelines for approval of autonomous ship systems are focused on the ships’ concrete operations and their geographic area. This is a natural consequence of the link between geography and the navigational complexity, but moving the ship to a new area or changing owners may require a costly re-approval. The automotive industry has introduced the Operational Design Domain (ODD) that can be used as a basis for approval. However, the ODD does not include the human control responsibilities, while most autonomous ship systems are expected to be dependent on sharing control responsibilities between humans and automation. We propose the definition of an operational envelope for autonomous ship systems that include the sharing of responsibilities between human and automation, and that is general enough to allow approval of autonomous ship systems in all geographic areas and operations that falls within the envelope. We also show how the operational envelope can be defined using a system modelling language, such as the unified modelling language (UML).


Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 586-591
Author(s):  
Haibo Hong ◽  
Zhenhua Jiang ◽  
Yuehong Yin

2022 ◽  
pp. 1-28
Author(s):  
Mingyu Lee ◽  
Youngseo Park ◽  
Hwisang Jo ◽  
Kibum Kim ◽  
Seungkyu Lee ◽  
...  

Abstract Tire tread patterns have played an important role in the automotive industry because they directly affect automobile performances. The conventional tread pattern development process has successfully produced and manufactured many tire tread patterns. However, a conceptual design process, which is a major part of the whole process, is still time-consuming due to repetitive manual interaction works between designers and engineers. In the worst case, the whole design process must be performed again from the beginning to obtain the required results. In this study, a deep generative tread pattern design framework is proposed to automatically generate various tread patterns satisfying the target tire performances in the conceptual design process. The main concept of the proposed method is that desired tread patterns are obtained through optimization based on integrated functions, which combine generative models and tire performance evaluation functions. To strengthen the effectiveness of the proposed framework, suitable image pre-processing, generative adversarial networks (GANs), 2D image-based tire performance evaluation functions, design generation, design exploration, and image post-processing methods are proposed with the help of domain knowledge of the tread pattern. The numerical results show that the proposed automatic design framework successfully creates various tread patterns satisfying the target tire performances such as summer, winter, or all-season patterns.


Author(s):  
GIUSEPPE DELLA PENNA ◽  
SERGIO OREFICE ◽  
BENEDETTO INTRIGILA ◽  
DANIELE MAGAZZENI ◽  
ROBERTO DEL SORDO ◽  
...  

In this paper we present SyBeL (System Behaviour modelling Language), an XML based formalism for software system modelling. In particular, SyBeL focuses on the description of the system behaviour in order to capture its functional requirements and has been designed to fulfill some of the most trendy software engineering issues. The use of the underlying XML language makes the artifacts generated by SyBeL immediately available to further automatic manipulation (e. g., to automatically generate test cases) without the need of intermediate models, as usually done in semi-formal approaches. Moreover, we are experimenting SyBeL on a variety of practical case studies.


Sign in / Sign up

Export Citation Format

Share Document