OPTICAL SPECTRAL INSTRUMENT BASED ON ACOUSTO-OPTIC TUNABLE FILTER

Author(s):  
A. S. Khomutov ◽  
◽  
O. D. Moskaletz ◽  
2012 ◽  
Vol 132 (2) ◽  
pp. 25-30 ◽  
Author(s):  
Nozomu Hirokubo ◽  
Hiroshi Komatsu ◽  
Nobuaki Hashimoto ◽  
Makoto Sonehara ◽  
Toshiro Sato

2005 ◽  
Author(s):  
Balam A. Willemsen
Keyword(s):  

Author(s):  
Masaki Niwa ◽  
Yojiro Mori ◽  
Hiroshi Hasegawa ◽  
Ken-ichi Sato
Keyword(s):  

2020 ◽  
Vol 91 (12) ◽  
pp. 123703
Author(s):  
Adriano Vissa ◽  
Maximiliano Giuliani ◽  
Peter K. Kim ◽  
Christopher M. Yip

2010 ◽  
Author(s):  
Chengang Lü ◽  
Ruifeng Zhang ◽  
Pengfei Cheng ◽  
Kejia Li ◽  
Xing Wu ◽  
...  

2009 ◽  
Vol 17 (3) ◽  
Author(s):  
J. Saktioto ◽  
J. Ali ◽  
M. Fadhali

AbstractFiber coupler fabrication used for an optical waveguide requires lossless power for an optimal application. The previous research coupled fibers were successfully fabricated by injecting hydrogen flow at 1 bar and fused slightly by unstable torch flame in the range of 800–1350°C. Optical parameters may vary significantly over wide range physical properties. Coupling coefficient and refractive index are estimated from the experimental result of the coupling ratio distribution from 1% to 75%. The change of geometrical fiber affects the normalized frequency V even for single mode fibers. V is derived and some parametric variations are performed on the left and right hand side of the coupling region. A partial power is modelled and derived using V, normalized lateral phase constant u, and normalized lateral attenuation constant, w through the second kind of modified Bessel function of the l order, which obeys the normal mode and normalized propagation constant b. Total power is maintained constant in order to comply with the energy conservation law. The power is integrated through V, u, and w over the pulling length of 7500 µm for 1-D. The core radius of a fiber significantly affects V and power partially at coupling region rather than wavelength and refractive index of core and cladding. This model has power phenomena in transmission and reflection for an optical switch and tunable filter.


1998 ◽  
Vol 52 (5) ◽  
pp. 717-724 ◽  
Author(s):  
Charity Coffey ◽  
Alex Predoehl ◽  
Dwight S. Walker

The monitoring of the effluent of a rotary dryer has been developed and implemented. The vapor stream between the dryer and the vacuum is monitored in real time by a process fiber-optic coupled near-infrared (NIR) spectrometer. A partial least-squares (PLS) calibration model was developed on the basis of solvents typically used in a chemical pilot plant and uploaded to an acousto-optic tunable filter NIR (AOTF-NIR). The AOTF-NIR is well suited to process monitoring as it electrically scans a crystal and hence has no moving parts. The AOTF-NIR continuously fits the PLS model to the currently collected spectrum. The returned values can be used to follow the drying process and determine when the material can be unloaded from the dryer. The effluent stream was monitored by placing a gas cell in-line with the vapor stream. The gas cell is fiber-optic coupled to a NIR instrument located 20 m away. The results indicate that the percent vapor in the effluent stream can be monitored in real time and thus be used to determine when the product is free of solvent.


Sign in / Sign up

Export Citation Format

Share Document