visible wavelength
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 100)

H-INDEX

34
(FIVE YEARS 5)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Taishi Nishihara ◽  
Akira Takakura ◽  
Masafumi Shimasaki ◽  
Kazunari Matsuda ◽  
Takeshi Tanaka ◽  
...  

Abstract Assemblies of single-walled carbon nanotubes with a specific chiral structure are promising future optofunctional materials because of their strong light–matter coupling arising from sharp optical resonances of quasi-one-dimensional excitons. Their strong optical resonances, which lie in the infrared-to-visible wavelength region, can be selected by their chiralities, and this selectivity promises a wide range of applications including photonic and thermo-optic devices. However, the broadband complex optical spectra of single-chirality carbon nanotube assemblies are scarce in the literature, which has prevented researchers and engineers from designing devices using them. Here, we experimentally determine broadband complex refractive index spectra of single-chirality carbon nanotube assemblies. Free-standing carbon nanotube membranes and those placed on sapphire substrates were fabricated via filtration of the nanotube solution prepared by the separation method using gel chromatography. Transmission and reflection spectra were measured in the mid-infrared to visible wavelength region, and the complex refractive indices of nanotube assemblies were determined as a function of photon energy. The real and imaginary parts of the refractive indices of the nanotube membrane with a bulk density of 1 g cm−3 at the first subband exciton resonance were determined to be approximately 2.7–3.6 and 1.3i–2.4i, respectively. We propose an empirical formula that phenomenologically describes the complex refractive index spectra of various single-chirality nanotube membranes, which can facilitate the design of photonic devices using carbon nanotubes as the material.


2021 ◽  
Vol 22 (20) ◽  
pp. 11033
Author(s):  
Piotr Tobiasz ◽  
Filip Borys ◽  
Marta Borecka ◽  
Hanna Krawczyk

The synthesis of photoswitchable azo-dibenzo[b,f]oxepine derivatives and microtubule inhibitors were described. Subsequently, we examined the reaction of methoxy derivative 3-nitrodibenzo[b,f]oxepine with different aldehydes and in the presence of BF3·OEt2 as a catalyst. Our study provided a very concise method for the construction of the azo-dibenzo[b,f]oxepine skeleton. The analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.


ACS Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 2666-2673
Author(s):  
Toshiki Kubo ◽  
Kenta Temma ◽  
Kazunori Sugiura ◽  
Hajime Shinoda ◽  
Kai Lu ◽  
...  

Small ◽  
2021 ◽  
pp. 2102987
Author(s):  
Feng‐Xia Liang ◽  
Rong‐Yu Fan ◽  
Jing‐Yue Li ◽  
Can Fu ◽  
Jing‐Jing Jiang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5624
Author(s):  
Jonghyun Lee ◽  
Youngrok Kim ◽  
Kihong Choi ◽  
Joonku Hahn ◽  
Sung-Wook Min ◽  
...  

We propose a compressive self-interference incoherent digital holography (SIDH) with a geometric phase metalens for section-wise holographic object reconstruction. We specify the details of the SIDH with a geometric phase metalens design that covers the visible wavelength band, analyze a spatial distortion problem in the SIDH and address a process of a compressive holographic section-wise reconstruction with analytic spatial calibration. The metalens allows us to realize a compressive SIDH system in the visible wavelength band using an image sensor with relatively low bandwidth. The operation of the proposed compressive SIDH is verified through numerical simulations.


2021 ◽  
Vol 7 (8) ◽  
pp. 136
Author(s):  
Mary B. Stuart ◽  
Andrew J. S. McGonigle ◽  
Matthew Davies ◽  
Matthew J. Hobbs ◽  
Nicholas A. Boone ◽  
...  

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone’s abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1583
Author(s):  
Hongyan Yang ◽  
Yupeng Chen ◽  
Mengyin Liu ◽  
Gongli Xiao ◽  
Yunhan Luo ◽  
...  

We propose a high quality-factor (Q-factor) multi-Fano resonance hybrid metamaterial waveguide (HMW) sensor. By ingeniously designing a metal/dielectric hybrid waveguide structure, we can effectively tailor multi-Fano resonance peaks’ reflectance spectrum appearing in the visible wavelength range. In order to balance the high Q-factor and the best Fano resonance modulation depth, numerical calculation results demonstrated that the ultra-narrow linewidth resolution, the single-side quality factor, and Figure of Merit (FOM) can reach 1.7 nm, 690, and 236, respectively. Compared with the reported high Q-value (483) in the near-infrared band, an increase of 30% is achieved. Our proposed design may extend the application of Fano resonance in HMW from mid-infrared, terahertz band to visible band and have important research value in the fields of multi-wavelength non-labeled biosensing and slow light devices.


Sign in / Sign up

Export Citation Format

Share Document