Electrophoretic Migration of Serum Lipoproteins in Starch Gel.

1959 ◽  
Vol 102 (1) ◽  
pp. 38-40 ◽  
Author(s):  
H. Kutt ◽  
F. McDowell ◽  
J. H. Pert
1961 ◽  
Vol 39 (9) ◽  
pp. 1329-1332 ◽  
Author(s):  
D. J. Ecobichon ◽  
W. Kalow

Zone electrophoresis on starch gel in conjunction with various histochemical staining methods was applied to the study of the water-soluble esterases of liver. The results indicated that in regard to electrophoretic migration and enzymatic properties, none of the human liver esterases was identical with any of the human serum esterases.


1969 ◽  
Vol 21 (03) ◽  
pp. 428-440 ◽  
Author(s):  
N. O Solum ◽  
S Łopaciuk

Summary1. Some properties of purified bovine platelet fibrinogen have been described and the data compared to those obtained by parallel analysis of purified bovine plasma fibrinogen.2. A close similarity was found between platelet and plasma fibrinogen as to sedimentation coefficients, electrophoretic mobilities in starch gel and polyacrylamide disc electrophoresis, light absorption spectra in the range 240 mμ to 330 mμ, ability to form immunoprecipitate with a rabbit antiserum against bovine plasma fibrinogen, total amino acid composition and in N-terminal amino acids.Differences between the fibrinogens were found as to intrinsic viscosity, carbohydrate content and behaviour upon clotting by thrombin. Intrinsic viscosity in 0.3 M NaCl at 25° was 0.48 dl/g for platelet fibrinogen as compared to 0.26 dl/g for plasma fibrinogen. The carbohydrate content of platelet fibrinogen was 0.56 ± 0.10% 1.56±0.10% and 1.37±0.09% for sialic acid (calculated as N-glycolyl neuraminic acid), hexose (galactose/mannose 1:2) and hexosamine (glucosamine), respectively. These values were 6, 54 and 26% higher than those found for plasma fibrinogen. The difference in clotting behaviour indicated a slower polymerization rate of the fibrin monomers formed from platelet fibrinogen than of those formed from plasma fibrinogen.


1969 ◽  
Vol 21 (03) ◽  
pp. 419-427 ◽  
Author(s):  
N. O Solum ◽  
S Łopaciuk

Summary1. Platelet fibrinogen has been purified from washed bovine platelets. The procedure was based on the methods for purification of plasma fibrinogen by fractionated precipitations and extractions with ethanol and glycine below 0°, and precipitation of proteins by dimethylformamide at 0°.2. The platelet extract obtained by freezing and thawing of the cells, freed from insoluble material by centrifugation at 23,000 x g for 30 min, contained 0.22 ±0.003mg fibrinogen per 109 platelets. Total protein of this fraction was 0.77 ±0.08 mg per 109 platelets whereas that of the insoluble fraction was 0.79 ±0.09 mg per 109 platelets.3. The most purified platelet fibrinogen fraction contained 91-98% of the protein in a thrombin-clottable state. The yield was approx. 20%. It showed homogeneity in analytical ultracentrifugation, in immunoelectrophoresis using an antiserum produced by immunization of rabbits against platelet extract, and in starch gel electrophoresis using a discontinuous system of Tris HCl and borate buffers offering a high resolution power towards the platelet proteins. Polyacrylamide disc electrophoresis revealed two to three faint lines behind the main fibrinogen line. At least one such line was also observed with purified plasma fibrinogen.


1966 ◽  
Vol 16 (03/04) ◽  
pp. 526-540 ◽  
Author(s):  
E. A Beck ◽  
D. P Jackson

SummaryThe effects of trypsin and plasmin on the functional and physicochemical properties of purified human fibrinogen were observed at various stages of proteolysis. Concentrations of plasmin and trypsin that produced fibrinogenolysis at comparable rates as measured in a pH stat produced, at similar rates, loss of precipitability of fibrinogen by heat and ammonium sulphate and alterations in electrophoretic mobility on starch gel. Trypsin produced a more rapid loss of clottability of fibrinogen and a more rapid appearance of inhibitors of the thrombin-fibrinogen clotting system than did plasmin. Consistent differences were noted between the effects of trypsin and plasmin on the immunoelectrophoretic properties of fibrinogen during the early stages of proteolysis.These results are consistent with the hypothesis that trypsin initially reacts with the same peptide bonds of fibrinogen that are split by thrombin, but these same bonds do not appear to be split initially by plasmin. Measurement of the various functional and physico-chemical changes produced by the action of trypsin and plasmin on fibrinogen can be used to recognize various stages of proteolysis.


1964 ◽  
Vol 12 (01) ◽  
pp. 126-136 ◽  
Author(s):  
Karl H. Slotta ◽  
J. D Gonzalez

SummaryWhen urea or ε-amino caproic acid were used as solublizing agents for plasminogen in electrophoretic experiments, only one broad band of the proenzyme was obtained on acetate cellulose, in starch block, and in acrylamide gel. In starch gel electrophoresis, however, both forms of plasminogen – the native or euglobulin and Kline’s or Pseudoglobulin plasminogen – separated into six bands. These migrated toward the cathode at room temperature in borate or veronal buffer in the alkaline range and showed full activity in fibrinagar-streptokinase plates.


Diabetes ◽  
1980 ◽  
Vol 29 (10) ◽  
pp. 774-777 ◽  
Author(s):  
C. M. Arbeeny ◽  
D. Edelstein ◽  
S. R. Freedman ◽  
H. A. Eder

2020 ◽  
Vol 14 (1) ◽  
pp. 289-301
Author(s):  
Daniel Oni ◽  
John Mwero ◽  
Charles Kabubo

Background: Concrete is a common material used in the construction of marine structures, such as bridges, water treatment plants, jetties, etc. The use of concrete in these environment exposes it to attack from chemicals like sulphates, chlorides and alkaline, thereby causing it to deteriorate, and unable to perform satisfactorily within its service life. Hence, the need to investigate the durability properties of concrete has become necessary especially when admixtures are used to modify some of its properties. Objective: This research work investigates the effect of Cassava Starch (CS) on the durability characteristics of concrete. Methods: The durability properties investigated in this work are water absorption, sorptivity, resistance to sulphates, sodium hydroxides and chloride penetration. The specimens were prepared by adding CS by weight of cement at 0.4, 0.8, 1.2, 1.6 and 2.0% respectively. The concrete specimens were cured for 28 days, tested for compressive strength before ponding in ionic solutions of sodium hydroxide, sulphuric acid and sodium chloride. Six (6) concrete mixes were prepared, five of which were used to evaluate the effect of CS on the durability characteristics of concrete. Results: The slump values reduced with the increasing dosage of CS due to the viscous nature of the CS paste. Generally, the addition of CS in concrete tends to improve the resistance of concrete to sulphate and chloride attack due to the ability of the muddy-like starch gel to block the pore spaces of hardened concrete, hence, reduces the rate at which water and other aggressive chemicals penetrate the concrete. In addition, the retarding ability of CS impedes the formation of mono-sulphate aluminates during cement hydration, thereby making the concrete less susceptible to sulphate attack. Conclusion: The addition of CS to concrete by weight of cement generally improved the durability characteristics of concrete, while the relative performances of the concrete mixes showed that CS 2.0 gave a better resistance to chloride penetration and sulphate attack.


Sign in / Sign up

Export Citation Format

Share Document