The Force Control of a Novel Variable Rotational Speed Hydraulic Pump-Controlled System Using Adaptive Fuzzy Controller with Self-tuning Fuzzy Sliding-mode Compensation

2011 ◽  
Vol 44 (1) ◽  
pp. 968-973 ◽  
Author(s):  
Mao-Hsiung CHIANG ◽  
Hao-Ting LIN
Author(s):  
Md Meftahul Ferdaus ◽  
Sreenatha G. Anavatti ◽  
Matthew A. Garratt ◽  
Mahardhika Pratama

Abstract Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous MAVs. Some desiring features of the FW MAV are quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability contrasted with similar-sized fixed and rotary wing MAVs. Inspired by the FW MAV’s advanced features, a four-wing Nature-inspired (NI) FW MAV is modelled and controlled in this work. The Fuzzy C-Means (FCM) clustering algorithm is utilized to construct the data-driven NIFW MAV model. Being model free, it does not depend on the system dynamics and can incorporate various uncertainties like sensor error, wind gust etc. Furthermore, a Takagi-Sugeno (T-S) fuzzy structure based adaptive fuzzy controller is proposed. The proposed adaptive controller can tune its antecedent and consequent parameters using FCM clustering technique. This controller is employed to control the altitude of the NIFW MAV, and compared with a standalone Proportional Integral Derivative (PID) controller, and a Sliding Mode Control (SMC) theory based advanced controller. Parameter adaptation of the proposed controller helps to outperform it static PID counterpart. Performance of our controller is also comparable with its advanced and complex counterpart namely SMC-Fuzzy controller.


2013 ◽  
Vol 284-287 ◽  
pp. 2315-2319
Author(s):  
Mao Hsiung Chiang ◽  
Chung Chieh Cheng ◽  
Liang Wang Lee ◽  
Maoh Chin Jiang ◽  
Jhih Hong Lin

Electro-Hydraulic pump-controlled servo systems that have high energy-efficiency can serve as energy-saving system. This paper aims to investigate the servo performance of the electro-hydraulic pump-controlled systems driven by an AC servo motor with variable rotational speed. A constant displacement axial piston pump is used in this research. Thus, the new hydraulic pump-controlled system with an AC motor servo and a constant displacement axial piston pump is investigated for position control of hydraulic servo machines. For that, this paper also develops the control strategy, sign-distance fuzzy sliding mode control, which can simplify the fuzzy rule base through the sliding surface. The developed high response variable rotational speed pump-controlled systems controlled by SD-FSMC are implemented and verified experimentally for positioning control in different stroke and loading conditions.


Sign in / Sign up

Export Citation Format

Share Document