The Relation Between Fibroblast Growth Factor 21 and Oxidative Stress in Insulin Resistance With Diabetics

2020 ◽  
Vol 21 (18) ◽  
pp. 6836
Author(s):  
Hyo Jin Maeng ◽  
Gha Young Lee ◽  
Jae Hyun Bae ◽  
Soo Lim

Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism. We aimed to investigate the effect of an FGF21 analogue (LY2405319) on the development of atherosclerosis and its associated parameters. ApoE−/− mice were fed an atherogenic diet for 14 weeks and were randomly assigned to control (saline) or FGF21 (0.1 mg/kg) treatment group (n = 10/group) for 5 weeks. Plaque size in the aortic arch/valve areas and cardiovascular risk markers were evaluated in blood and tissues. The effects of FGF21 on various atherogenesis-related pathways were also assessed. Atherosclerotic plaque areas in the aortic arch/valve were significantly smaller in the FGF21 group than in controls after treatment. FGF21 significantly decreased body weight and glucose concentrations, and increased circulating adiponectin levels. FGF21 treatment alleviated insulin resistance and decreased circulating concentrations of triglycerides, which were significantly correlated with plaque size. FGF21 treatment reduced lipid droplets in the liver and decreased fat cell size and inflammatory cell infiltration in the abdominal visceral fat compared with the control group. The monocyte chemoattractant protein-1 levels were decreased and β-hydroxybutyrate levels were increased by FGF21 treatment. Uncoupling protein 1 expression in subcutaneous fat was greater and fat cell size in brown fat was smaller in the FGF21 group compared with controls. Administration of FGF21 showed anti-atherosclerotic effects in atherosclerosis-prone mice and exerted beneficial effects on critical atherosclerosis pathways. Improvements in inflammation and insulin resistance seem to be mechanisms involved in the mitigation of atherosclerosis by FGF21 therapy.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e55632 ◽  
Author(s):  
Birgitte Lindegaard ◽  
Thine Hvid ◽  
Thomas Grøndahl ◽  
Christian Frosig ◽  
Jan Gerstoft ◽  
...  

Metabolism ◽  
2010 ◽  
Vol 59 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Sebastian Stein ◽  
Holger Stepan ◽  
Jürgen Kratzsch ◽  
Michael Verlohren ◽  
Hans-Joachim Verlohren ◽  
...  

2021 ◽  
Author(s):  
Xinghao Jiang ◽  
Yimeng Zou ◽  
Yeboah Kwaku Opoku ◽  
Shijie Liu ◽  
Dan Wang ◽  
...  

Abstract Epidemiological investigations have shown an elevated expression of fibroblast growth factor 21 (FGF21) in the serum of patients with hyperuricemia. However, the effect of FGF21 on hyperuricemic nephropathy is still unknown. The purpose of this study, therefore, was to explore the effect and mechanism of action of FGF21 on hyperuricemic nephropathy. The level of FGF21 in PBMCs was determined in 10 patients with hyperuricemic nephropathy. Hyperuricemic mice models were induced in wild-type C57BL/6 and FGF21 knockout mice. Six mice in each group were treated with FGF21 at a dose of 1mg/kg and 5mg/kg for 30 days. For the in vitro studies, glomerular mesangial cells were exposed to lipopolysaccharide and monosodium uric acid to induce inflammation. This was followed by treatment with 100nM, 1000nM of FGF21 for 72 h to observe the therapeutic effect. The levels of FGF21 in patients with hyperuricemic nephropathy were elevated. Also, FGF21 knockout mice experienced more severe nephropathy compared to the WT mice. This was characterized by an increase in inflammatory factors and fibrosis in the kidney, which was reversed by exogenous FGF21 treatment. FGF21 recorded a significant therapeutic effect through the activation of Akt/Nrf2 signal pathway in both in vivo and in vitro studies. However, the effect increasing effect of FGF21 on Nrf2 was reduced by the addition of Akt inhibitor GSK690693. In conclusion, our study found for the first time that FGF21 can significantly improve hyperuricemic nephropathy through the promotion of the Akt/Nrf2 signalling pathway leading to improvement in oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document