Development of Lithium-ion Batteries from Micro-Structured to Nanostructured Materials: Its Issues and Challenges

2012 ◽  
Vol 95 (3) ◽  
pp. 283-314 ◽  
Author(s):  
Harish Kumar ◽  
Sundar Rajan ◽  
Ashok K. Shukla

Lithium-ion batteries are the systems of choice, offering high energy density, flexibility, lightness in weight, design and longer lifespan than comparable battery technologies. A brief historical review is given of the development of Li-ion rechargeable batteries, highlighting the ongoing research strategies, and highlighting the challenges regarding synthesis, characterization, electrochemical performance and safety of these systems. This work is primarily focused on development of Li-ion batteries from micro-structured to nanostructured materials and some of the critical issues namely, electrode preparation, synthesis, and electrochemical characterization. The purpose of this review is to act as a reference for future work in this area.

2020 ◽  
Vol 340 ◽  
pp. 135871 ◽  
Author(s):  
Wenheng Zhang ◽  
Longwei Liang ◽  
Fei Zhao ◽  
Yang Liu ◽  
Linrui Hou ◽  
...  

2013 ◽  
Vol 787 ◽  
pp. 40-45 ◽  
Author(s):  
Wei Wang ◽  
Shi Xiong Wang ◽  
Yun Bo He ◽  
Xiang Jun Yang ◽  
Hong Guo

With high energy density, long cycle life and high voltage Lithium-ion batteries are one of very promising pollution-free power supply. The electrolytes for these batteries consist of flammable organic solvents which are serious hazard under abusive conditions especially for large-scale lithium batteries. To reduce flammability of electrolyte of lithium-ion batteries and resolve safety problem, Tris (2, 2, 2-trifluoroethyl) phosphate (TFP) was synthesized and added into electrolytes as additive. It was found that the SET decreased significantly with the increase of the concentration of TFP. When the concentration is over 20% (vol.) electrolytes are nonflammable. At the same time, with the concentration increasing, the ion-conductivity decreased and the discharge capacity also came down slowly. The electrochemistry stability of LiCoO2 cathode was improved. According to our study, it is possible to find a cosolvent or additive that makes nonflammable lithium-ion electrolyte be put into practice.


Author(s):  
gaolong zhu ◽  
yuyu he ◽  
yunlong deng ◽  
ming wang ◽  
xiaoyan liu ◽  
...  

Abstract High energy density lithium-ion batteries are urgently needed due to the rapid growth demands of electric vehicles, electronic devices, and grid energy storage devices. There is still significant opportunity to improve the energy density of existing state-of-the-art lithium-ion batteries by optimizing the separator thickness, which is usually ignored. Here, the dependence of battery gravimetric and volumetric energy densities on separator thickness has been quantitatively discussed in different type Li-ion batteries by calculations combined with experiments. With a decrease in separator thickness, the volumetric energy density is greatly improved. Meanwhile, the gravimetric energy densities are significantly improved as the electrolyte soaking in the separator is reduced. The gravimetric and volumetric energy densities of graphite (Gr) | NCM523 cells enable to increase 11.5% and 29.7%, respectively, by reducing the thickness of separator from 25 μm to 7 μm. Furthermore, the Li | S battery exhibits an extremely high energy density of 664.2 Wh Kg-1 when the thickness of the separator is reduced to 1 μm. This work sheds fresh light on the rational design of high energy density lithium-ion batteries.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1698 ◽  
Author(s):  
Ri-Guang Chi ◽  
Seok-Ho Rhi

Recently, the use of electrical vehicles has abruptly increased due to environmental crises. The high energy density of lithium-ion batteries is their main advantage for use in electric vehicles (EVs). However, the thermal management of Li-ion batteries is a challenge due to the poor heat resistance of Lithium ions. The performance and lifetime of lithium ion batteries are strongly affected by the internal operating temperature. Thermal characterization of battery cells is very important to ensure the consistent operation of a Li-ion battery for its application. In the present study, the OHP (Oscillating Heat Pipe) system is proposed as a battery cooling module, and experimental verification was carried out. OHP is characterized by a long evaporator section, an extremely short condenser section, and almost no adiabatic section. Experimental investigations were conducted using various parameters such as the filling ratio, orientation, coolant temperature, and heat flux. Average temperature of the heater’s surface was maintained at 56.4 °C using 14 W with 25 °C coolant water. The experimental results show that the present cooling technology basically meets the design goal of consistent operation.


2019 ◽  
Vol 7 (7) ◽  
pp. 3278-3288 ◽  
Author(s):  
Ki-Hun Nam ◽  
Geon-Kyu Sung ◽  
Jeong-Hee Choi ◽  
Jong-Sang Youn ◽  
Ki-Joon Jeon ◽  
...  

A layered germanium telluride (GeTe) and its C-modified nanocomposite (GeTe–C) are synthesized by a simple solid-state synthesis technique, and their electrochemical behaviors for rechargeable lithium-ion batteries (LIBs) are evaluated.


2017 ◽  
Vol 5 (35) ◽  
pp. 18888-18895 ◽  
Author(s):  
Xilin Li ◽  
Kun Qian ◽  
Yan-Bing He ◽  
Cheng Liu ◽  
Decheng An ◽  
...  

An attractive approach to fabricate high energy density and safe Li-ion batteries was proposed by utilizing a pentaerythritol tetraacrylate-based gel-polymer electrolyte.


2021 ◽  
Vol 490 ◽  
pp. 229527
Author(s):  
Min Wang ◽  
Wentao Yao ◽  
Peichao Zou ◽  
Shengyu Hu ◽  
Haojie Zhu ◽  
...  

2021 ◽  
Author(s):  
Yujing Bi ◽  
Deyu Wang

As electric vehicle market growing fast, lithium ion batteries demand is increasing rapidly. Sufficient battery materials supplies including cathode, anode, electrolyte, additives, et al. are required accordingly. Although layered cathode is welcome in high energy density batteries, it is challenging to balance the high energy density and safety beside cost. As consequence, olivine phosphate cathode is coming to the stage center again along with battery technology development. It is important and necessary to revisit the olivine phosphate cathode to understand and support the development of electric vehicles utilized lithium ion batteries. In addition, blend cathode is a good strategy to tailor and balance cathode property and performance. In this chapter, blend cathode using olivine phosphate cathode will be discussed as well as olivine phosphate cathode.


Sign in / Sign up

Export Citation Format

Share Document