scholarly journals Lubavinskoe Au-bearing ore deposit: petrochemical features of rocks and ores, and the origin conditions (Eastern Transbakalia)

2019 ◽  
Vol 485 (6) ◽  
pp. 713-719
Author(s):  
B. N. Abramov ◽  
V. Ph. Posohov ◽  
Yu. A. Kalinin

Lubavinskoe Au-bearing ore deposit is situated to submeridional deep layered tectonic zone. In these zones the ore veins are associated with small Mesozoic stocks of granodiorite and rocks of the dyke complexes of the sublatitudinal spread. According to geochemical features these intrusions are correspond to adacits. The proportion isotopic ratio of the oxygen and strontium at granodiorites indicates to their origin due to mantle-core interaction. Calculated oxygen isotope composition δ18 in the fluid in equilibrium with quartz in the productive phase 220-280 °С changes from 3,59 to 9.59‰, which corresponds to water of magmatic fluid nature. This is confirmed by the isotopic composition of sulfar for sulphides δ34S, ‰ from +0.7 to +6.7‰, corresponding to hydrothermal orogenic ore deposits.

2014 ◽  
Vol 11 (12) ◽  
pp. 16573-16597
Author(s):  
K. R. Hendry ◽  
G. E. A. Swann ◽  
M. J. Leng ◽  
H. J. Sloane ◽  
C. Goodwin ◽  
...  

Abstract. The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotopic composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the biological vital effects on silica silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that appear related to unusual spicule silicification. The largest variation in both isotope systems was associated to the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence of an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotopic signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotopic signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.


2019 ◽  
Vol 61 (3) ◽  
pp. 3-30
Author(s):  
N. S. Bortnikov ◽  
L. Ya. Aranovich ◽  
S. G. Kryazhev ◽  
S. Z. Smirnov ◽  
V. G. Gonevchuk ◽  
...  

With a view to reveal special characteristics of the transition stage from granite crystallization to rare-metal ore deposition it is studied Badzhal tin-bearing magmatic-fluid system of eponymously-named volcano-plutonic zone of the Middle Priamyrie. For that end the detail research of melt, fluid-melt and fluid inclusions and oxygen isotopes from minerals of granitoids from Verkne-Urmi massif from Badzhal volcano-plutonic zone and also minerals of Sn-W deposits Pravo-Urmi and Blizhnee have been carried out. The formation of greisens and hydrothermal veins were caused by the development of the integrated system associating with establishing of Verkne-Urmi granite massif which is one of a dome fold of Badzhal cryptobatholith. For the first time for tin deposits it has been followed up the transition from the magmatic phase of granite crystallization to the hydrothermal ore formation stage and the evolution of magmatic fluid from its separation from magmatic melt to Sn-W ore deposition. The direct evidence of tin-bearing fluid separation under melt crystallization is combined fluid-melt inclusions. Glass composition in inclusions shows that granites and granite-porphyry were crystallizing from acid and from limited to high-aluminous melts, that is value ASI changes from 0.95 to 1.33 and a content of alkalies varies from 6.02 up to 9.02 mass.%. Cl and F concentrations in glasses are according 0.03–0.14 and 0.14–0.44 mass.% and turned out to be higher of same in the total composition of rocks (0.02 and 0.05–0.13 mass.% in accordance). These differences indicate that Cl and F could be separated from granite melt under its crystallization and degasation. H2O content made from total deficiency electron microprobe analysis is 8–11 mass.%. This evaluation was made inclusive of a probable effect of “Na loss” (Nielsen, Sigurdson, 1981) under aqueous glass crystallization. Considering a high error of a such estimation (Devine et al., 1995), it should take to obtained values as a very approximate evaluation and consider that examined melts contained about 9,5–10,0 mass.% of H2O. The results of melt inclusion examination show that at any rate a part of melt forming magmatic rocks of Badzhal Ore Magmatic System are crystallizing at about T = 650 °C. These melts were acid, limited fluoride and meta- and high aluminous. The reason of low temperatures of its crystallization are likely a high pressure of aqua and also a increased content of F. Most likely that examined inclusions characterize the final stage of establishing of the massif, herewith at the system crystals, residual liquor and magmatic fluid phase coexist. The fluid from which greisens of Pravo-Urmi deposit formed is similar in properties to the supercritical fluid absorbing by magmatic minerals. The salinity of this fluid varying from ~9 to 12 mass.% equiv. NaCl, maximal T = 550 °C (with consideration for the temperature correction of T gom on a pressure ~1 кbar) are similar to such of magmatic fluid, which permit to connect its origin with pluton cooling. The formation of greisens and quartz-topaz veins of Pravo-Urmi deposit is related to fall of temperature of magmatic fluid from 550–450 up to 480–380 °C. The evolution of fluid deposited quartz-cassiterite veins of Blizhnee deposit, which based upon oxygen isotope composition (d18ОН2О ≈ 8.5‰) also separated from magma, was going at more subsurface conditions under much lesser pressure. That led to the gas separation of a fluid with salinity ~13 mass.% equa. NaCl under T = 420–340 °C on thin low salinity vapour and brine with concentration 33.5–37.4 mass.% equiv. NaCl. The research of oxygen isotope system testifies that oxygen isotope composition of ore-forming fluid controlled by equilibrium with granites at wide interval tempera­tures (from ~700 °С up to the beginning of greisen crystallization). Correspondence of measured and calculation data of the offered model indicates that the considerable volume of external fluid with other isotope characteristics which did not reach the isotope equilibrium with Verkhne-Urmi massif did not come into the magmatic isotope system. The discovered differences of physico-chemical conditions for two studied deposits are not “critical” and support an idea about their formation as the single magmatic-fluid system.


Author(s):  
Yu. K. Vasil’Chuk ◽  
A. C. Vasil’Chuk

Syngenetic ice wedges have been investigated in the Ayon Island. Their isotopic composition, geochemical characteristics of both ice wedges and enclosing sediment have been obtained; four ice-wedges stages have been distinguished. Paleo temperature reconstructions for Ayon Island and adjacent territories of northern Chukotka have been yielded at the basis of these results. It is observed almost identical trends in the distribution of ice-wedge isotopic characteristics in the island and in the lower reaches of the Kolyma River, as well as differences in the magnitude of isotopic oscillations during the transition from Late Pleistocene to the Holocene as compared to ice-wedges of the Lower Kolyma region.


2015 ◽  
Vol 12 (11) ◽  
pp. 3489-3498 ◽  
Author(s):  
K. R. Hendry ◽  
G. E. A. Swann ◽  
M. J. Leng ◽  
H. J. Sloane ◽  
C. Goodwin ◽  
...  

Abstract. The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the vital effects on silica, silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that are related to unusual spicule silicification. The largest variation in both isotope systems was associated with the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotope signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotope signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.


Geology ◽  
1993 ◽  
Vol 21 (3) ◽  
pp. 281 ◽  
Author(s):  
Gerald M. Friedman ◽  
R. P. Major ◽  
R. Michael Lloyd ◽  
F. Jerry Lucia

2007 ◽  
Vol 41 (6) ◽  
pp. 1870-1876 ◽  
Author(s):  
Jorge E. Spangenberg ◽  
Bernhard Dold ◽  
Marie-Louise Vogt ◽  
Hans-Rudolf Pfeifer

2011 ◽  
Vol 438 (1) ◽  
pp. 697-700
Author(s):  
N. S. Bortnikov ◽  
V. M. Novikov ◽  
E. O. Dubinina ◽  
A. D. Savko ◽  
A. G. Berketa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document