scholarly journals Y-REE mineralization in biotite-arfvedsonite granites of the Katugin rare-metal deposit, Transbaikalia, Russia

2019 ◽  
Vol 487 (1) ◽  
pp. 88-92 ◽  
Author(s):  
A. E. Starikova ◽  
E. V. Sklyarov ◽  
V. V. Sharygin

We provide the results of study of the extremely enriched in Y-REE carbonate-fluorine isolations from biotite-arfvedsonite granite of the Katugin rare metal deposit. New chemical data of isolations mineral phases - gagarinite-(Y), tveitite-(Y), fluocerite-(Ce), basnaesite, fluornatropyroclore, are delivered. Carbonate-fluoride globule in quartz of hosting granite gives possibility to estimate crystallization order. This finding might be the evidence of silicate-fluorine immiscibility suggested before for Y-REE segregations in the Katugin granites. Fluorine melt segregation took likely place at the magmatic stage of biotite-arfvedsonite granite formation. It causes host granite depletion with fluorine and redistribution of REE and Y in fluorine salt melt.

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 490
Author(s):  
Anastasia E. Starikova ◽  
Ekaterina P. Bazarova ◽  
Valentina B. Savel’eva ◽  
Eugene V. Sklyarov ◽  
Elena A. Khromova ◽  
...  

Pyrochlore group minerals are the main raw phases in granitic rocks of the Katugin complex-ore deposit that stores Nb, Ta, Y, REE, U, Th, Zr, and cryolite. There are three main types: Primary magmatic, early postmagmatic (secondary-I), and late hydrothermal (secondary-II) pyrochlores. The primary magmatic phase is fluornatropyrochlore, which has high concentrations of Na2O (to 10.5 wt.%), F (to 5.4 wt.%), and REE2O3 (to 17.3 wt.%) but also low CaO (0.6–4.3 wt.%), UO2 (to 2.6 wt.%), ThO2 (to 1.8 wt.%), and PbO (to 1.4 wt.%). Pyrochlore of this type is very rare in nature and is limited to a few occurrences: Rare-metal deposits of Nechalacho in syenite and nepheline syenite (Canada) and Mariupol in nepheline syenite (Ukraine). It may have crystallized synchronously with or slightly later than melanocratic minerals (aegirine, biotite, and arfvedsonite) at the late magmatic stage when Fe from the melt became bound, which hindered the crystallization of columbite. Secondary-I pyrochlore follows cracks or replaces primary pyrochlore in grain rims and is compositionally similar to the early phase, except for lower Na2O concentrations (2.8 wt.%), relatively low F (4 wt.%), and less complete A- and Y-sites occupancy. Secondary-II pyrochlore is a product of late hydrothermal alteration, which postdated the formation of the Katugin deposit. It differs in large ranges of elements and contains minor K, Ba, Pb, Fe, and significant Si concentrations but also low Na and F. Its composition mostly falls within the field of hydro- and keno-pyrochlore.


2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


2017 ◽  
Vol 472 (1) ◽  
pp. 67-71 ◽  
Author(s):  
A. E. Starikova ◽  
V. V. Sharygin ◽  
E. V. Sklyarov

Sign in / Sign up

Export Citation Format

Share Document