late magmatic stage
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 934
Author(s):  
Celso de Barros Gomes ◽  
Rogério Guitarrari Azzone ◽  
Gaston Eduardo Enrich Rojas ◽  
Vincenza Guarino ◽  
Excelso Ruberti

General information is presented on ten agpaitic occurrences located in southern Brazil and at the border between Brazil and Paraguay. All the Brazilian agpaitic rocks are Late Cretaceous in age, whereas the Paraguayan ones are older than Early Triassic. The most significant occurrence is Poços de Caldas, the largest alkaline massif in South America. In general, these agpaitic rocks contain mineral assemblages that indicate presence of typical halogen-bearing Na–Ca–HFSE phases, eudialyte-, rinkite- and wöhlerite-group minerals being the most frequent ones. However, these associations are indeed more complex in terms of composition, with accessory phases in some cases consisting of various minerals, including U–Th oxides/silicates, Nb oxides, REE–Sr–Ba bearing carbonates–fluorocarbonates–phosphates–silicates and Zr–Na rich silicates. They usually form late magmatic stage to hydrothermal/deuteric assemblages linked with coarse and fine-grained, mainly silica-undersaturated evolved rocks. Data also indicate significant differences in type, amount and composition of agpaitic minerals in all investigated occurrences.



2021 ◽  
Author(s):  
Abimbola Chris Ogunyele ◽  
Tommaso Giovanardi ◽  
Mattia Bonazzi ◽  
Maurizio Mazzucchelli ◽  
Alberto Zanetti

<p>The Ivrea-Verbano Zone (IVZ, westernmost sector of the Southern Alps) represents a unique opportunity to investigate the Paleozoic to Mesozoic geodynamic evolution of the Gondwana and Laurasia boundary from the perspective of the lower continental crust. Only recently, the petrochemical record of Triassic-Jurassic magmatism has been recognized. It mainly affected the northernmost tip, the Finero Complex, where the continental crust was tectonically thinned before opening of Alpine Tethys. However, the Mesozoic magmatism in the Finero Complex is still poorly-constrained. Firstly, its extent is largely unknown, because the mantle and crustal intrusives were already enriched by Paleozoic processes. Secondly, Mesozoic melts migration started when the Finero Complex was still placed at P-T conditions typical of a continental crust-mantle transition (1 GPa): this has promoted the reopening of the geochronological clocks in both Paleozoic and Mesozoic rocks, which usually provides wide time intervals. Lastly, the finding of Mesozoic magmatism as composite veins/pods and metasomatised layers has not allowed an exhaustive reconstruction of the primitive melts geochemistry. To place further constraints on such issue, a new dyke swarm cropping out in the Finero Phlogopite Peridotite mantle unit has been investigated. Dykes usually cut at high angle the mantle foliation and are up to 60 cm thick. They are composed by coarse-grained hornblendite to anorthosite, both phlogopite/biotite-bearing. Many dykes are composite, showing variable proportions of hornblendite and anorthosite. In places, the dyke swam was affected by volatiles overpressure as late magmatic stage, which produced plastic flow and development of a porphyroclastic structure by deformation of the early cumulates, with widespread segregation of a fine-grained mica matrix.</p><p>Dykes mainly consist of pargasite, phlogopite/biotite, albite (An 8-10), in association with apatite, monazite, ilmenite, zircon, Nb-rich oxides, carbonates. Enrichments in Fe (amphibole and biotite) and Na (plagioclase) suggest segregation from evolved melts, strongly enriched in H<sub>2</sub>O, P, C. The large LILE and LREE contents in amphiboles, sometimes associated to high Nb, Ta, Zr and Hf concentrations, as well as the mineral assemblage, support an alkaline affinity of the melts. The strongly positive εHf<sub>t </sub>(+10) of zircons and the isotopic Sr composition of amphiboles (0.7042) point to a derivation of the melts from mildly enriched sources, possibly located at the crust-mantle interface.</p><p>Zircons from anorthosite layers are mostly anhedral fragments. They show homogenous internal structure or sector zoning. Concordant <sup>206</sup>Pb/<sup>238</sup>U zircon ages vary from 221 ± 9 Ma to 192 ± 8 Ma. The results of this study confirm that mantle input to the Southern Alps magmatism was of alkaline affinity from Norian to Sinemurian. A widespread fluids circulation induced by such magmatism at high P-T conditions was likely the main cause of the diffuse geochronological reset towards Mesozoic ages of the northern IVZ.</p>



Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1070
Author(s):  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Taras L. Panikorovskii ◽  
Ayya V. Bazai ◽  
Victor N. Yakovenchuk

The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at the top), leucocratic nepheline syenite (foyaite), foidolite (urtite). The upper part of the massif (the Eudialyte complex) is indistinctly layered, and lujavrite enriched with eudialyte-group minerals (EGM) prevails there. In this article, we present the results of a study of the chemical composition and petrography of more than 400 samples of the EGM from the main types of rock of the Lovozero massif. In all types of rock, the EGM form at the late magmatic stage later than alkaline clinopyroxenes and amphiboles or simultaneously with it. When the crystallization of pyroxenes and EGM is simultaneous, the content of ferrous iron in the EGM composition increases. The Mn/Fe ratio in the EGM increases during fractional crystallization from lujavrite to foyaite and urtite. The same process leads to an increase in the modal content of EGM in the foyaite of the Layered complex and to the appearance of primary minerals of the lovozerite group in the foyaite of the Eudialyte complex.



Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1011
Author(s):  
Michael A.W. Marks ◽  
Hans G.M. Eggenkamp ◽  
Petya Atanasova ◽  
Felicitas Mundel ◽  
Sascha Kümmel ◽  
...  

We review the compositional variation of eudialyte-group minerals (EGM) from the Ilímaussaq complex in South Greenland. Investigated samples cover all major rock units and associated pegmatites and aplites. The whole data set (>3000 analyses from >250 samples) exhibits variable XMn (0.1–0.5), REE (0.2–1.7 apfu), Nb (0.1–0.4), and Cl contents (0.4–1.6 apfu). Most EGM compositions are Na-rich (13–15 apfu), while deviations to Na-rich but also to Na-poor compositions occur because of a combination of primary features (peralkalinity, water activity) and secondary alteration. During magma evolution, REE contents in EGM cores generally increase and reach their highest contents in the most evolved rock units of the complex. This points to the moderate compatibility of REE in EGM and a bulk D (cEGM/cmelt) value of <1 during magma differentiation. Chlorine contents in EGM cores continuously decrease, and are lowest at the rims of individual crystals, suggesting a continuous decrease of Cl activity in the magmas by large-scale EGM and sodalite extraction during the orthomagmatic stage and water enrichment during the late-magmatic stage. The overall variations of XMn across stratigraphy are only minor and likely influenced by the co-crystallization of sodic pyroxene and amphibole (c.f. aegirine, arfvedsonite) and local phase proportions. Similarly, Nb and Ti contents are influenced by co-crystallizing aenigmatite, rinkite, and others. Their presence buffers Ti and Nb contents to rather constant and low values, while their absence may cause variable enrichment on a local scale. Very low Sr contents (<0.1 apfu) in magmatic EGM from Ilímaussaq are related to the basaltic nature of the parental magmas of the complex, as large-scale plagioclase fractionation occurred prior to the formation of the Ilímaussaq magmas, effectively removing Sr from the system. This is in line with very strong negative Eu anomalies in EGM from Ilímaussaq. Consistently, Sr contents in EGM from alkaline complexes, for which foiditic parental magmas are assumed, are much higher and, in such cases, negative Eu anomalies are generally absent.



Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 490
Author(s):  
Anastasia E. Starikova ◽  
Ekaterina P. Bazarova ◽  
Valentina B. Savel’eva ◽  
Eugene V. Sklyarov ◽  
Elena A. Khromova ◽  
...  

Pyrochlore group minerals are the main raw phases in granitic rocks of the Katugin complex-ore deposit that stores Nb, Ta, Y, REE, U, Th, Zr, and cryolite. There are three main types: Primary magmatic, early postmagmatic (secondary-I), and late hydrothermal (secondary-II) pyrochlores. The primary magmatic phase is fluornatropyrochlore, which has high concentrations of Na2O (to 10.5 wt.%), F (to 5.4 wt.%), and REE2O3 (to 17.3 wt.%) but also low CaO (0.6–4.3 wt.%), UO2 (to 2.6 wt.%), ThO2 (to 1.8 wt.%), and PbO (to 1.4 wt.%). Pyrochlore of this type is very rare in nature and is limited to a few occurrences: Rare-metal deposits of Nechalacho in syenite and nepheline syenite (Canada) and Mariupol in nepheline syenite (Ukraine). It may have crystallized synchronously with or slightly later than melanocratic minerals (aegirine, biotite, and arfvedsonite) at the late magmatic stage when Fe from the melt became bound, which hindered the crystallization of columbite. Secondary-I pyrochlore follows cracks or replaces primary pyrochlore in grain rims and is compositionally similar to the early phase, except for lower Na2O concentrations (2.8 wt.%), relatively low F (4 wt.%), and less complete A- and Y-sites occupancy. Secondary-II pyrochlore is a product of late hydrothermal alteration, which postdated the formation of the Katugin deposit. It differs in large ranges of elements and contains minor K, Ba, Pb, Fe, and significant Si concentrations but also low Na and F. Its composition mostly falls within the field of hydro- and keno-pyrochlore.



Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 442 ◽  
Author(s):  
Frances Chikanda ◽  
Tsubasa Otake ◽  
Yoko Ohtomo ◽  
Akane Ito ◽  
Takaomi D. Yokoyama ◽  
...  

Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites.



Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 537 ◽  
Author(s):  
Dmitry Zozulya ◽  
Kåre Kullerud ◽  
Erling Ravna ◽  
Yevgeny Savchenko ◽  
Ekaterina Selivanova ◽  
...  

The present work reports on new mineralogical and whole-rock geochemical data from the Breivikbotn silicocarbonatite (Seiland igneous province, North Norway), allowing conclusions to be drawn concerning its origin and the role of late fluid alteration. The rock shows a rare mineral association: calcite + pyroxene + amphibole + zeolite group minerals + garnet + titanite, with apatite, allanite, magnetite and zircon as minor and accessory minerals, and it is classified as silicocarbonatite. Calcite, titanite and pyroxene (Di36–46 Acm22–37 Hd14–21) are primarily magmatic minerals. Amphibole of mainly hastingsitic composition has formed after pyroxene at a late-magmatic stage. Zeolite group minerals (natrolite, gonnardite, Sr-rich thomsonite-(Ca)) were formed during hydrothermal alteration of primary nepheline by fluids/solutions with high Si-Al-Ca activities. Poikilitic garnet (Ti-bearing andradite) has inclusions of all primary minerals, amphibole and zeolites, and presumably crystallized metasomatically during a late metamorphic event (Caledonian orogeny). Whole-rock chemical compositions of the silicocarbonatite differs from the global average of calciocarbonatites by elevated silica, aluminium, sodium and iron, but show comparable contents of trace elements (REE, Sr, Ba). Trace element distributions and abundances indicate within-plate tectonic setting of the carbonatite. The spatial proximity of carbonatite and alkaline ultramafic rock (melteigite), the presence of “primary nepheline” in carbonatite together with the trace element distributions indicate that the carbonatite was derived by crystal fractionation of a parental carbonated foidite magma. The main prerequisites for the extensive formation of zeolite group minerals in silicocarbonatite are revealed.



Author(s):  
Dmitry Zozulya ◽  
Kåre Kullerud ◽  
Erling Ravna ◽  
Yevgeny Savchenko ◽  
Ekaterina Selivanova ◽  
...  

The present work reports new mineralogical and whole rock geochemical data from the Breivikbotn silicocarbonatite (Seiland igneous province, North Norway), allowing conclusions to be drawn concerning its origin and the role of late fluid alteration. The rock shows a rare mineral association: calcite + pyroxene + amphibole + zeolite group minerals + garnet + titanite, with apatite, allanite, magnetite and zircon as minor and accessory minerals, and it is classified as silicocarbonatite. Calcite, titanite and pyroxene (Di36-46 Acm22-37 Hd14-21) are primarily magmatic minerals. Amphibole of hastingsitic composition has formed after pyroxene at a late-magmatic stage. Zeolite group minerals (natrolite, gonnardite, Sr-rich thomsonite-(Ca)) were formed during hydrothermal alteration of primary nepheline by fluids/solutions with high Si-Al-Ca activities. Poikilitic garnet (Ti-bearing andradite) has inclusions of all primary minerals, amphibole and zeolites, and presumably crystallized metasomatically during a late metamorphic event (Caledonian orogeny). Whole rock chemical compositions of the silicocarbonatite differs from the global average of calciocarbonatites by elevated silica, aluminium, sodium and iron, but show comparable contents of trace elements (REE, Sr, Ba). Trace element distributions indicate within-plate tectonic setting of the carbonatite. The spatial proximity of carbonatite and alkaline ultramafic rock (melteigite), the presence of &ldquo;primary nepheline&rdquo; in carbonatite together with the trace element distributions indicate that the carbonatite was derived from crystal fractionation of a parental carbonated foidite magma. The main prerequisites for the extensive formation of zeolite group minerals in silicocarbonatite are revealed.



Lithos ◽  
2015 ◽  
Vol 232 ◽  
pp. 418-419
Author(s):  
Pablo G. Molina ◽  
Miguel A. Parada ◽  
Francisco J. Gutiérrez ◽  
Changqian Ma ◽  
Jianwei Li ◽  
...  


Lithos ◽  
2015 ◽  
Vol 227 ◽  
pp. 255-268 ◽  
Author(s):  
Pablo G. Molina ◽  
Miguel A. Parada ◽  
Francisco J. Gutiérrez ◽  
Changqian Ma ◽  
Jianwei Li ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document