scholarly journals Many-dimensional tauberian theorems for holomorphic functions of bounded argument

2019 ◽  
Vol 487 (3) ◽  
pp. 242-245
Author(s):  
Ju. N. Drozhzhinov

For generalized functions with Laplace transform has nonnegative imaginary part in tube domain over positive actant, we found sufficient conditions for existence of quasiasymptotic, the function with regular behavior with respect to which the quasiasymptotic exists being explicitly found. The obtained results are used to steady of the asymptotic behaviour of solutions of the Cauchy problem of passive operators.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Ashordia ◽  
Inga Gabisonia ◽  
Mzia Talakhadze

AbstractEffective sufficient conditions are given for the unique solvability of the Cauchy problem for linear systems of generalized ordinary differential equations with singularities.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Author(s):  
Marina V. Dontsova

The Cauchy problem for a system of two first-order quasilinear equations with absolute terms is considered. The study of this problem’s solvability in original coordinates is based on the method of an additional argument. The existence of the local solution of the problem with smoothness which is not lower than the smoothness of the initial conditions, is proved. Sufficient conditions of existence are determined for the nonlocal solution that is continued by a finite number of steps from the local solution. The proof of the nonlocal resolvability of the Cauchy problem relies on original global estimates.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 224 ◽  
Author(s):  
Stefano Vignolo

We discuss the Cauchy problem and the junction conditions within the framework of f ( R ) -gravity with torsion. We derive sufficient conditions to ensure the well-posedness of the initial value problem, as well as general conditions to join together on a given hypersurface two different solutions of the field equations. The stated results can be useful to distinguish viable from nonviable f ( R ) -models with torsion.


Sign in / Sign up

Export Citation Format

Share Document