Working Memory for Low-Level Visual Features: Mechanisms for Detecting the Mismatch between the Current and Stored in Memory Orientation

2018 ◽  
Vol 482 (2) ◽  
pp. 224-227
Author(s):  
E. Mikhaylova ◽  
◽  
N. Gerasimenko ◽  
P. Prokudin ◽  
◽  
...  
2019 ◽  
Author(s):  
Remington Mallett ◽  
Anurima Mummaneni ◽  
Jarrod Lewis-Peacock

Working memory persists in the face of distraction, yet not without consequence. Previous research has shown that memory for low-level visual features is systematically influenced by the maintenance or presentation of a similar distractor stimulus. Responses are frequently biased in stimulus space towards a perceptual distractor, though this has yet to be determined for high-level stimuli. We investigated whether these influences are shared for complex visual stimuli such as faces. To quantify response accuracies for these stimuli, we used a delayed-estimation task with a computer-generated “face space” consisting of eighty faces that varied continuously as a function of age and sex. In a set of three experiments, we found that responses for a target face held in working memory were biased towards a distractor face presented during the maintenance period. The amount of response bias did not vary as a function of distance between target and distractor. Our data suggest that, similar to low-level visual features, high-level face representations in working memory are biased by the processing of related but task-irrelevant information.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241110
Author(s):  
Ariel Starr ◽  
Mahesh Srinivasan ◽  
Silvia A. Bunge

We can retain only a portion of the visual information that we encounter within our visual working memory. Which factors influence how much information we can remember? Recent studies have demonstrated that the capacity of visual working memory is influenced by the type of information to be remembered and is greater for real-world objects than for abstract stimuli. One explanation for this effect is that the semantic knowledge associated with real-world objects makes them easier to maintain in working memory. Previous studies have indirectly tested this proposal and led to inconsistent conclusions. Here, we directly tested whether semantic knowledge confers a benefit for visual working memory by using familiar and unfamiliar real-world objects. We found a mnemonic benefit for familiar objects in adults and children between the ages of 4 and 9 years. Control conditions ruled out alternative explanations, namely the possibility that the familiar objects could be more easily labeled or that there were differences in low-level visual features between the two types of objects. Together, these findings demonstrate that semantic knowledge influences visual working memory, which suggests that the capacity of visual working memory is not fixed but instead fluctuates depending on what has to be remembered.


2013 ◽  
Author(s):  
Valerio Santangelo ◽  
Simona Arianna Di Francesco ◽  
Serena Mastroberardino ◽  
Emiliano Macaluso

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunjun Nam ◽  
Takayuki Sato ◽  
Go Uchida ◽  
Ekaterina Malakhova ◽  
Shimon Ullman ◽  
...  

AbstractHumans recognize individual faces regardless of variation in the facial view. The view-tuned face neurons in the inferior temporal (IT) cortex are regarded as the neural substrate for view-invariant face recognition. This study approximated visual features encoded by these neurons as combinations of local orientations and colors, originated from natural image fragments. The resultant features reproduced the preference of these neurons to particular facial views. We also found that faces of one identity were separable from the faces of other identities in a space where each axis represented one of these features. These results suggested that view-invariant face representation was established by combining view sensitive visual features. The face representation with these features suggested that, with respect to view-invariant face representation, the seemingly complex and deeply layered ventral visual pathway can be approximated via a shallow network, comprised of layers of low-level processing for local orientations and colors (V1/V2-level) and the layers which detect particular sets of low-level elements derived from natural image fragments (IT-level).


2021 ◽  
Author(s):  
Maryam Nematollahi Arani

Object recognition has become a central topic in computer vision applications such as image search, robotics and vehicle safety systems. However, it is a challenging task due to the limited discriminative power of low-level visual features in describing the considerably diverse range of high-level visual semantics of objects. Semantic gap between low-level visual features and high-level concepts are a bottleneck in most systems. New content analysis models need to be developed to bridge the semantic gap. In this thesis, algorithms based on conditional random fields (CRF) from the class of probabilistic graphical models are developed to tackle the problem of multiclass image labeling for object recognition. Image labeling assigns a specific semantic category from a predefined set of object classes to each pixel in the image. By well capturing spatial interactions of visual concepts, CRF modeling has proved to be a successful tool for image labeling. This thesis proposes novel approaches to empowering the CRF modeling for robust image labeling. Our primary contributions are twofold. To better represent feature distributions of CRF potentials, new feature functions based on generalized Gaussian mixture models (GGMM) are designed and their efficacy is investigated. Due to its shape parameter, GGMM can provide a proper fit to multi-modal and skewed distribution of data in nature images. The new model proves more successful than Gaussian and Laplacian mixture models. It also outperforms a deep neural network model on Corel imageset by 1% accuracy. Further in this thesis, we apply scene level contextual information to integrate global visual semantics of the image with pixel-wise dense inference of fully-connected CRF to preserve small objects of foreground classes and to make dense inference robust to initial misclassifications of the unary classifier. Proposed inference algorithm factorizes the joint probability of labeling configuration and image scene type to obtain prediction update equations for labeling individual image pixels and also the overall scene type of the image. The proposed context-based dense CRF model outperforms conventional dense CRF model by about 2% in terms of labeling accuracy on MSRC imageset and by 4% on SIFT Flow imageset. Also, the proposed model obtains the highest scene classification rate of 86% on MSRC dataset.


2018 ◽  
Vol 38 (18) ◽  
pp. 4357-4366 ◽  
Author(s):  
Olivia Gosseries ◽  
Qing Yu ◽  
Joshua J. LaRocque ◽  
Michael J. Starrett ◽  
Nathan S. Rose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document