scholarly journals Morphogenesis of the Powdery Mildew Fungus in Water. (1) The Effect of Liquid on Infection Process of Erysiphe graminis.

1993 ◽  
Vol 59 (5) ◽  
pp. 487-491 ◽  
Author(s):  
Naoto YAMAOKA
1996 ◽  
Vol 250 (4) ◽  
pp. 477-482
Author(s):  
Y. D. Wei ◽  
D. B. Collinge ◽  
V. Smedegaard-Petersen ◽  
H. Thordal-Christensen

1995 ◽  
Vol 47 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Patrick Schweizer ◽  
Laurence Vallélian-Bindschedler ◽  
Egon Mösinger

1978 ◽  
Vol 56 (20) ◽  
pp. 2544-2549 ◽  
Author(s):  
Susumu Takamatsu ◽  
Hiroshi Ishizaki ◽  
Hitoshi Kunoh

Some effects of calcium salts on the infection process of Erysiphe graminis hordei in coleoptiles of barley were investigated. Calcium chloride enhanced the incidence of haustoria but depressed that of papillae. Calcium bromide and calcium nitrate likewise enhanced the incidence of haustoria. Calcium chloride treatment at varied times and with varied durations during incubation after inoculation showed that events occurring in coleoptiles between 9 and 13 h after inoculation were most affected by the treatment. This period included the times that appressoria matured, cytoplasm aggregated, papillae were produced, and haustoria were formed, and the effect of calcium might be associated with one or more of these events.


1979 ◽  
Vol 57 (4) ◽  
pp. 408-412 ◽  
Author(s):  
S. Takamatsu ◽  
H. Ishizaki ◽  
H. Kunoh

Earlier researchers have shown that the susceptibility of barley to infection by Erysiphe graminis hordei is enhanced by calcium ions but inhibited by lithium. Some effects of these ions on the infection process of E. graminis hordei in coleoptiles of barley were investigated in this study. Whereas 1 mM lithium chloride inhibited appressorial formation considerably and haustorial formation completely, these effects were totally offset by 10 mM calcium chloride. Moreover, whereas 5 and 10 mM lithium chloride inhibited both appressorial and haustorial formation completely, the former was offset considerably by 10 mM calcium chloride, but the latter was not.Sequential calcium chloride − lithium chloride or lithium chloride − calcium chloride treatments carried out at different times and for various durations showed that events occurring in coleoptiles 11 to 13 h after inoculation were most vulnerable to the treatments. These events correspond to infection stages involving the development of cytoplasmic aggregates, papillae, and haustoria. The data suggest that the two ions in question might compete for a common binding site in a reaction(s) associated with certain stages of appressorial and haustorial development.


1984 ◽  
Vol 102 (3) ◽  
pp. 679-685 ◽  
Author(s):  
J. F. Jenkyn ◽  
M. E. Finney

SummaryExperiments using intact seedlings and detached leaves failed to confirm previous reports that ammonia gas is evolved from barley leaves during the establishment of infection by the powdery mildew fungus Erysiphe graminis f.sp. hordei.In the experiments using intact seedlings infection did, however, lead to greater concentrations of ammonium nitrogen in the senescing leaves and, in one experiment, the subsequent evolution of ammonia gas from these seedlings. Losses of nitrogen as ammonia gas from crops are probably small, but it is possible that under some circumstances they may represent a significant proportion of the otherwise unexplained nitrogen losses and hence be important in experiments which aim to study the nitrogen balance of crop-soil systems.


Genome ◽  
1989 ◽  
Vol 32 (5) ◽  
pp. 913-917 ◽  
Author(s):  
Y. Tosa

F1 hybrid cultures between Erysiphe graminis f.sp. agropyri (wheatgrass mildew fungus) and E. graminis f.sp. tritici (wheat mildew fungus) were produced by using a common host of the two formae spéciales. When three common wheat cultivars, Triticum aestivum cv. Norin 4, T. aestivum cv. Norin 10, and T. compactum cv. No. 44, were inoculated with a population of F1 cultures, avirulent and virulent cultures segregated in a 3:1 ratio. This indicated that two major genes are involved in the avirulence of E. graminis f.sp. agropyri, Ak-1, on each of the three cultivars. Further analyses revealed that the three pairs of avirulence genes have one gene in common. On T. aestivum cv. Shin-chunaga, T. aestivum cv. Norin 26, and a strain of T. macha, the F1 population segregated in the same pattern as on T. aestivum cv. Norin 4, indicating that the same pair of avirulence genes is operating on these four cultivars. On T. aestivum cv. Red Egyptian the distribution of F1 phenotypes was continuous, suggesting that no major genes are involved in the avirulence of Ak-1 on this cultivar.Key words: powdery mildew, Erysiphe graminis, avirulence, wheat, wheatgrass.


Sign in / Sign up

Export Citation Format

Share Document