SINGULARLY FINITE RANK NONSYMMETRIC PERTURBATIONS ${\mathcal H}_{-2}$-CLASS OF A SELF-ADJOINT OPERATOR

2021 ◽  
Vol 9 (1) ◽  
pp. 140-151
Author(s):  
O. Dyuzhenkova ◽  
M. Dudkin

The singular nonsymmetric rank one perturbation of a self-adjoint operator from classes ${\mathcal H}_{-1}$ and ${\mathcal H}_{-2}$ was considered for the first time in works by Dudkin M.E. and Vdovenko T.I. \cite{k8,k9}. In the mentioned papers, some properties of the point spectrum are described, which occur during such perturbations. This paper proposes generalizations of the results presented in \cite{k8,k9} and \cite{k2} in the case of nonsymmetric class ${\mathcal H}_{-2}$ perturbations of finite rank. That is, the formal expression of the following is considered \begin{equation*} \tilde A=A+\sum \limits_{j=1}^{n}\alpha_j\langle\cdot,\omega_j\rangle\delta_j, \end{equation*} where $A$ is an unperturbed self-adjoint operator on a separable Hilbert space ${\mathcal H}$, $\alpha_j\in{\mathbb C}$, $\omega_j$, $\delta_j$, $j=1,2, ..., n<\infty$ are vectors from the negative space ${\mathcal H}_{-2}$ constructed by the operator $A$, $\langle\cdot,\cdot\rangle$ is the dual scalar product between positive and negative spaces.

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


1989 ◽  
Vol 111 (3-4) ◽  
pp. 337-346 ◽  
Author(s):  
R. Datko

SynopsisIn this note we show that certain perturbations, involving rank-one stabilising operators, which correspond to small delays in some feedback control problems, shift a part of the point spectrum of the unperturbed operator into the right-half plane.


1991 ◽  
Vol 43 (2) ◽  
pp. 322-330 ◽  
Author(s):  
Nigel Higson ◽  
Mikael Rørdam

A well known theorem of Weyl-von Neumann asserts that if X is a self-adjoint operator acting on a separable Hilbert space, then there is a decomposition 1 = Σ en of the identity into finite rank projections so that we may write X = Σ ƛnen + y, where the ƛnare scalars and y is a compact operator with small norm. In other words, X can be approximately diagonalized.


2003 ◽  
Vol 46 (3) ◽  
pp. 575-595 ◽  
Author(s):  
Jan Janas ◽  
Maria Malejki ◽  
Yaroslav Mykytyuk

AbstractIn this paper spectral properties of non-selfadjoint Jacobi operators $J$ which are compact perturbations of the operator $J_0=S+\rho S^*$, where $\rho\in(0,1)$ and $S$ is the unilateral shift operator in $\ell^2$, are studied. In the case where $J-J_0$ is in the trace class, Friedrichs’s ideas are used to prove similarity of $J$ to the rank one perturbation $T$ of $J_0$, i.e. $T=J_0+(\cdot,p)e_1$. Moreover, it is shown that the perturbation is of ‘smooth type’, i.e. $p\in\ell^2$ and$$ \varlimsup_{n\rightarrow\infty}|p(n)|^{1/n}\le\rho^{1/2}. $$When $J-J_0$ is not in the trace class, the Friedrichs method does not work and the transfer matrix approach is used. Finally, the point spectrum of a special class of Jacobi matrices (introduced by Atzmon and Sodin) is investigated.AMS 2000 Mathematics subject classification: Primary 47B36. Secondary 47B37


Author(s):  
Clément Luneau ◽  
Jean Barbier ◽  
Nicolas Macris

Abstract We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new non-trivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.


2004 ◽  
Vol 47 (2) ◽  
pp. 257-263
Author(s):  
Alka Marwaha

AbstractA band is a semigroup of idempotent operators. A nonnegative band S in having at least one element of finite rank and with rank (S) > 1 for all S in S is known to have a special kind of common invariant subspace which is termed a standard subspace (defined below).Such bands are called decomposable. Decomposability has helped to understand the structure of nonnegative bands with constant finite rank. In this paper, a geometric characterization of maximal, rank-one, indecomposable nonnegative bands is obtained which facilitates the understanding of their geometric structure.


2007 ◽  
Vol 75 (2) ◽  
pp. 470-476 ◽  
Author(s):  
Wolfgang Desch ◽  
Gudrun Schappacher ◽  
Wilhelm Schappacher

2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


Sign in / Sign up

Export Citation Format

Share Document