scholarly journals VLC Based Indoor Tracking System with IOT Network for Smart Buildings

Author(s):  
S.T. Santhanalakshmi ◽  
Bhavya Sree. S.K ◽  
Chittamuru Asrija ◽  
Deepthi. J
2019 ◽  
Vol 14 (5) ◽  
pp. 612-619 ◽  
Author(s):  
Barry S. Mason ◽  
Viola C. Altmann ◽  
Victoria L. Goosey-Tolfrey

Purpose: To determine the effect of trunk and arm impairments on physical and technical performance during wheelchair rugby (WR) competition. Methods: Thirty-one highly trained WR players grouped according to their trunk (no trunk [NT]; some trunk [T] function) and arm impairments (poor, moderate, and good arm function) participated in 5 WR matches. Players’ physical (wheelchair mobility) and technical (ball handling) activities were analyzed using an indoor tracking system and video analysis, respectively. Results: Trunk impairment explained some of the variance in physical (10.6–23.5%) and technical (16.2–33.0%) performance. T covered more distance, had more possession, scored more goals, and received and made more passes yet spent less time at low speeds and performed fewer inbounds than NT (≤.05). Arm impairment explained some of the variance in all physical (16.7–47.0%) and the majority of technical (13.1–53.3%) performance measures. Moderate and good arm function covered more distance, reached higher peak speeds, spent more time in higher speed zones, scored more goals, had more possession, and received and made more passes, with a higher percentage of 1-handed and long passes, than poor arm function. Good arm function also received more passes and made a higher percentage of 1-handed passes and defensive blocks than moderate arm function (P ≤ .05). Conclusions: Arm impairment affects a greater number of physical and technical measures of performance specific to WR than trunk impairment during competition. Having active finger function (good arm function) yielded no further improvements in physical performance but positively influenced a small number of technical skills.


2019 ◽  
Vol 11 (9) ◽  
pp. 1072 ◽  
Author(s):  
Miguel Martínez del Horno ◽  
Ismael García-Varea ◽  
Luis Orozco Barbosa

With the growing development of smartphones equipped with Wi-Fi technology and the need of inexpensive indoor location systems, many researchers are focusing their efforts on the development of Wi-Fi-based indoor localization methods. However, due to the difficulties in characterizing the Wi-Fi radio signal propagation in such environments, the development of universal indoor localization mechanisms is still an open issue. In this paper, we focus on the calibration of Wi-Fi-based indoor tracking systems to be used by smartphones. The primary goal is to build an accurate and robust Wi-Fi signal propagation representation in indoor scenarios.We analyze the suitability of our approach in a smartphone-based indoor tracking system by introducing a novel in-motion calibration methodology using three different signal propagation characterizations supplemented with a particle filter. We compare the results obtained with each one of the three characterization in-motion calibration methodologies and those obtained using a static calibration approach, in a real-world scenario. Based on our experimental results, we show that the use of an in-motion calibration mechanism considerably improves the tracking accuracy.


Sign in / Sign up

Export Citation Format

Share Document