scholarly journals Seismic wave attenuation in the uppermost glacier ice of Storglaciären, Sweden

2010 ◽  
Vol 56 (196) ◽  
pp. 249-256 ◽  
Author(s):  
Alessio Gusmeroli ◽  
Roger A. Clark ◽  
Tavi Murray ◽  
Adam D. Booth ◽  
Bernd Kulessa ◽  
...  

AbstractWe conducted seismic refraction surveys in the upper ablation area of Storglaciären, a small valley glacier located in Swedish Lapland. We estimated seismic-wave attenuation using the spectral-ratio method on the energy travelling in the uppermost ice with an average temperature of approximately −1 °C. Attenuation values were derived between 100 and 300 Hz using the P-wave quality factor, QP, the inverse of the internal friction. By assuming constant attenuation along the seismic line we obtained mean QP = 6 ± 1. We also observed that QP varies from 8 ± 1 to 5 ± 1 from the near-offset to the far-offset region of the line, respectively. Since the wave propagates deeper at far offsets, this variation is interpreted by considering the temperature profile of the study area; far-offset arrivals sampled warmer and thus more-attenuative ice. Our estimates are considerably lower than those reported for field studies in polar ice (∼500–1700 at −28°C and 50–160 at −10°C) and, hence, are supportive of laboratory experiments that show attenuation increases with rising ice temperature. Our results provide new in situ estimates of QP for glacier ice and demonstrate a valuable method for future investigations in both alpine and polar ice.

2017 ◽  
Vol 35 (3) ◽  
Author(s):  
Julián David Peláez ◽  
Luis Alfredo Montes

ABSTRACT. Seismic wave attenuation (Q−1) values indicate relevant media properties, such as fluid content and porosity. Q−1 estimates, obtained using both VSP and conventional well log data, did not exhibit comparable trends, nor values. Whereas VSP results represent total attenuation, well log Q−1, which, theoretically, should represent scattering losses, displayed a low percentage correlation with transmission coefficients and other well logs. The influence of processing routines, chosen methodology and input parameters on Q−1-values suggests that ASR (Amplitude Spectral Ratio) and CFS (Centroid Frequency Shift) attenuation estimates should be regarded, in practical terms, as relative quantities instead of absolute ones. Seemingly incoherent negative values are frequent, nonetheless these could hold a physical meaning related to elastic amplification at interfaces. Considering that quality factor (Q) values obtained were more unstable than Q−1-values, it is advisable to report the latter. Keywords: Vertical Seismic Profiles, well logs, transmission coefficients, scattering, amplification.RESUMO. Os valores de atenuação da onda sísmica (Q−1) indicam propriedades relavantes dos meios, tais como conteúdo de fluido e porosidade. As estimativas do Q−1, obtidas usando dados de VSP e dados de poços convencionais, não apresentaram tendências nem valores comparáveis. Enquanto os resultados de VSP representamatenuação total, os resultados dos dados de poços, que teoricamente deveriam representar perdas de dispersão, apresentaramuma baixa correlação percentual com os coeficientes de transmissão e outros dados de poços. A influência das rotinas de processamento, da metodologia escolhida e dos parâmetros de entrada nos valores Q−1 sugere que as estimativas de atenuação ASR (Amplitude Spectral Ratio) e CFS (Centroid Frequency Shift) devem ser, em termos práticos, consideradas como quantidades relativas em vez de absolutas. Valores negativos aparentemente incoerentes são frequentes, no entanto estes poderiam conter um significado físico relacionado `a amplificação elástica nas interfaces. Considerando que os valores do fator de qualidade (Q) obtidos foram mais instáveis do que os valores de Q−1, é aconselhável documentar o último. Palavras-chave: Perfis Sísmicos Verticais, registros de poços, coeficientes de transmissão, dispersão, amplificação.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Aniekan Martin Ekanem ◽  
Xiang Yang Li ◽  
Mark Chapman ◽  
Main Ian ◽  
Jianxin Wei

We used the seismic physical modelling approach to study the effect of fracture thickness or aperture on P-wave attenuation, using a laboratory scale model of two horizontal layers. The first layer is isotropic while the second layer has six fractured blocks, each consisting of thin penny-shaped chips of 3 mm fixed diameter and same thickness to simulate a set of aligned vertical fractures. The thickness of the chips varies according to the blocks while the fracture density remains the same in each block. 2D reflection data were acquired with the physical model submerged in a water tank in a direction perpendicular to the fracture strikes using the pulse and transmission method. The induced attenuation was estimated from the preprocessed CMP gathers using the QVO method, which is an extension of the classical spectral ratio method of attenuation measurement from seismic data. The results of our analysis show a direct relationship between attenuation and the fracture thickness or aperture. The induced attenuation increases systematically with fracture thickness, implying more scattering of the wave energy in the direction of increasing aperture. This information may be useful to differentiate the effect caused by thin microcracks from that of large open fractures.


2018 ◽  
Author(s):  
Marius Kriegerowski ◽  
Simone Cesca ◽  
Matthias Ohrnberger ◽  
Torsten Dahm ◽  
Frank Krüger

Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp 


2018 ◽  
Vol 67 (4) ◽  
pp. 956-968 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Hanjun Yin ◽  
Jerome Fortin ◽  
Beatriz Quintal

2021 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Beatriz Quintal ◽  
Sally M. Benson ◽  
Jerome Fortin

<p>Monitoring of the subsurface with seismic methods can be improved by better understanding the attenuation of seismic waves due to fluid pressure diffusion (FPD). In porous rocks saturated with multiple fluid phases the attenuation of seismic waves by FPD is sensitive to the mesoscopic scale distribution of the respective fluids. The relationship between fluid distribution and seismic wave attenuation could be used, for example, to assess the effectiveness of residual trapping of carbon dioxide (CO2) in the subsurface. Determining such relationships requires validating models of FPD with accurate laboratory measurements of seismic wave attenuation and modulus dispersion over a broad frequency range, and, in addition, characterising the fluid distribution during experiments. To address this challenge, experiments were performed on a Berea sandstone sample in which the exsolution of CO2 from water in the pore space of the sample was induced by a reduction in pore pressure. The fluid distribution was determined with X-ray computed tomography (CT) in a first set of experiments. The CO2 exosolved predominantly near the outlet, resulting in a heterogeneous fluid distribution along the sample length. In a second set of experiments, at similar pressure and temperature conditions, the forced oscillation method was used to measure the attenuation and modulus dispersion in the partially saturated sample over a broad frequency range (0.1 - 1000 Hz). Significant P-wave attenuation and dispersion was observed, while S-wave attenuation and dispersion were negligible. These observations suggest that the dominant mechanism of attenuation and dispersion was FPD. The attenuation and dispersion by FPD was subsequently modelled by solving Biot’s quasi-static equations of poroelasticity with the finite element method. The fluid saturation distribution determined from the X-ray CT was used in combination with a Reuss average to define a single phase effective fluid bulk modulus. The numerical solutions agree well with the attenuation and modulus dispersion measured in the laboratory, supporting the interpretation that attenuation and dispersion was due to FPD occurring in the heterogenous distribution of the coexisting fluids. The numerical simulations have the advantage that the models can easily be improved by including sub-core scale porosity and permeability distributions, which can also be determined using X-ray CT. In the future this could allow for conducting experiments on heterogenous samples.</p>


2019 ◽  
Author(s):  
F. Bouchaala ◽  
M.Y. Ali ◽  
J. Matsushima ◽  
Y. Bouzidi ◽  
E.M. Takam Takougang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document