ISRN Geophysics
Latest Publications


TOTAL DOCUMENTS

21
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-8946

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Roberta A. Cardoso ◽  
Valiya M. Hamza

Bottom-hole temperatures and physical properties derived from geophysical logs of deep oil wells have been employed in assessment of the geothermal field of the Campos basin, situated in the continental margin of southeast Brazil. The results indicate geothermal gradients in the range of 24 to 41°C/km and crustal heat flow in the range of 30 to 100 mW/m2 within the study area. Maps of the regional distributions of these parameters point to arc-shaped northeast-southwest trending belts of relatively high gradients and heat flow in the central part of the Campos basin. This anomalous geothermal belt is coincident with the areas of occurrences of oil deposits. The present study also reports progress obtained in reconstructing the subsidence history of sedimentary strata at six localities within the Campos basin. The results point to episodes of crustal extension with magnitudes of 1.3 to 2, while extensions of subcrustal layers are in the range of 2 to 3. Thermal models indicate high heat flow during the initial stages of basin evolution. Maturation indices point to depths of oil generation greater than 3 km. The age of peak oil generation, allowing for variable time scales for cooling of the extended lithosphere, is found to be less than 40 Ma.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
N. J. George ◽  
E. U. Nathaniel ◽  
S. E. Etuk

The application of geophysical method employing vertical electrical sounding (VES) method in combination with laboratory analysis of aquifer sediments has been used to access the economically accessible groundwater reserve and its protective capacity in some parts of Eastern Obolo Local Government area, the eastern region of the Nigerian Niger Delta. Schlumberger electrode configuration was used to sound twelve VES to occupy the areas that have borehole locations and accessibility for the spread of current electrodes to at least 1000 m. Based on the results, the safe and economic aquifer potential has groundwater reserve of about 168480558±18532861 m3. The desired aquifer thickness and its depth of burial have average value of 52.02 m and 73.14 m, respectively. The area has a fair protective capacity. This is indicated by 58.33% weak, 16.67% moderate, and 25% good protective capacity for the area. This study was done in one of the oil cities, where contaminated Salt River water is used as the major source of water for domestic uses and it is believed that the settlers will appropriate this result and sue for safe groundwater at the indicated depths.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. W. Dongmo ◽  
L. Y. Kagho ◽  
F. B. Pelap ◽  
G. B. Tanekou ◽  
Y. L. Makenne ◽  
...  

The study of 1D spring-block model of earthquake dynamics with consideration of water effects in preexisting fault deals with new forms of frictional force. An analytical study of the equation of motion enables us to establish that motion of geological fault is accelerated by water pressure. In the same setting the critical value of frictional velocity for which appears the discontinuous (first-order) transition from a stick-slip behavior to a creep motion strongly depends on water pressure. The investigation also displays the magnitude and probability of events as a function of water pressure; these two quantities decrease and increase, respectively, with the variation of water pressure.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Aniekan Martin Ekanem ◽  
Xiang Yang Li ◽  
Mark Chapman ◽  
Main Ian ◽  
Jianxin Wei

We used the seismic physical modelling approach to study the effect of fracture thickness or aperture on P-wave attenuation, using a laboratory scale model of two horizontal layers. The first layer is isotropic while the second layer has six fractured blocks, each consisting of thin penny-shaped chips of 3 mm fixed diameter and same thickness to simulate a set of aligned vertical fractures. The thickness of the chips varies according to the blocks while the fracture density remains the same in each block. 2D reflection data were acquired with the physical model submerged in a water tank in a direction perpendicular to the fracture strikes using the pulse and transmission method. The induced attenuation was estimated from the preprocessed CMP gathers using the QVO method, which is an extension of the classical spectral ratio method of attenuation measurement from seismic data. The results of our analysis show a direct relationship between attenuation and the fracture thickness or aperture. The induced attenuation increases systematically with fracture thickness, implying more scattering of the wave energy in the direction of increasing aperture. This information may be useful to differentiate the effect caused by thin microcracks from that of large open fractures.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
P. A. Alao ◽  
A. I. Ata ◽  
C. E. Nwoke
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
George Caminha-Maciel ◽  
Irineu Figueiredo

We present an analysis of the error involved in the so-called low induction number approximation in the electromagnetic methods. In particular, we focus on the EM34 equipment settings and field configurations, widely used for geophysical prospecting of laterally electrical conductivity anomalies and shallow targets. We show the theoretical error for the conductivity in both vertical and horizontal dipole coil configurations within the low induction number regime and up to the maximum measuring limit of the equipment. A linear relationship may be adjusted until slightly beyond the point where the conductivity limit for low induction number (B=1) is reached. The equations for the linear fit of the relative error in the low induction number regime are also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
T. N. Obiekezie ◽  
S. C. Obiadazie ◽  
G. A. Agbo

The Day-to-day variability of the geomagnetic field elements at the African longitudes has been studied for the year 1987 using geomagnetic data obtained from four different African observatories. The analysis was carried out on solar quiet days using hourly values of the Horizontal, , and vertical, , geomagnetic field values. The results of this study confirm that Sq is a very changeable phenomenon, with a strong day-to-day variation. This day-to-day variation is seen to be superimposed on magnetic disturbances of a magnetospheric origin.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Chi-Min Liu ◽  
Ray-Yeng Yang ◽  
Hwung-Hweng Hwung

The flow driven by the strike-slip faulting is theoretically analyzed in this paper. The surface of the strike-slip fault is generally near vertical, and the corresponding plates move in horizontal directions during the faulting. The focus of present paper is on the flow at the early stage when the faulting is activated. Standard procedures for deriving the exact solution of the induced flow are first demonstrated. Based on the derived solution, flows generated by three kinds of faulting are examined to observe and compare the evolution of velocity profiles and the corresponding kinetic energy. The results show that the flow energy rapidly decays as the speed of the moving plates begins to slow down. Moreover, mathematical methods proposed in this study provide a useful basis for related studies on not only geophysics, but also fluid mechanics, industry manufacturing, heat-conduction problems, and other possible applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Adetona A. Abbass ◽  
Abu Mallam

The Total Aeromagnetic Data covering the study area was subjected to First Vertical Derivative, Spectral Depth Analysis, and Source Parameter Imaging (SPI). The result from the First Vertical Derivative shows that the Northern part of the area is covered by the young biotite granite of Precambrian origin, and the western edge is covered by the old granite, gneisses, and migmatite of Western Nigeria, while the remaining area is covered by the cretaceous sedimentary deposits. The entire area was divided into forty-eight sections. Spectral Depth Analysis was run for each of these forty-eight sections; the result shows that a maximum depth above 7 km was obtained within the cretaceous sediments of Idah, Ankpa, and below Udegi at the middle of the study area. Minimum depth estimates between 188.0 and 452 meters were observed around the basement regions. Results from Source Parameter Imaging show a minimum depth of 76.983 meters and a maximum thickness of sedimentation of 9.847 km, which also occur within Idah, Ankpa, and Udegi axis. The disparity observed in depth obtained by each method is discussed based on the merit and demerit of each method, and the depths obtained were compared with results from previous researchers. Geophysical implication of the result to oil and gas exploration in the area is briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
D. T. Luong ◽  
R. Sprik

Characterizing the streaming potential and electroosmosis properties of porous media is essential in applying seismoelectric and electroseismic phenomena for oil exploration. Some parameters such as porosity, permeability, formation factor, pore size, the number of pores, and the zeta potential of the samples can be obtained from elementary measurements. We performed streaming potential and electro-osmosis measurements for 6 unconsolidated samples made of spherical polymer particles. To check the validity of the measurements, we also used alternative analysis to determine the average pore size of the samples and, moreover, used a sample made of sand particles to determine the zeta potential.


Sign in / Sign up

Export Citation Format

Share Document