scholarly journals Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project

1998 ◽  
Vol 27 ◽  
pp. 201-206 ◽  
Author(s):  
R. Calov ◽  
A. Savvin ◽  
R. Greve ◽  
I. Hansen ◽  
K. Hutter

The three-dimensional polythermal ice-sheet model SICOPOLIS is applied to the entire Antarctic ice sheet in support of the European Project for Ice Coring in Antartica (EPICA). in this study, we focus on the deep ice core to be drilled in Dronning Maud Land (Atlantic sector of East Antarctica) as part of EPICA. It has not yel been decided where the exact drill-site will be situated. Our objective is to support EPICA during its planning phase as well as during the actual drilling process. We discuss a transient simulation with a climate forcing derived from the Vostok ice core and the SPECMAP sea-level record. This simulation shows the range of accumulation, basal temperature, age and shear deformation to be expected in the region of Dronning Maud Land. Based on these results, a possible coring position is proposed, and the distribution of temperature, age, horizontal velocity and shear deformation is shown for this column.

2000 ◽  
Vol 30 ◽  
pp. 69-75 ◽  
Author(s):  
A. Savvin ◽  
R. Greve ◽  
R. Calov ◽  
B. Mügge ◽  
K. Hutter

AbstractThe modern dynamic and thermodynamic state of the entire Antarctic ice sheet is computed for a 242 200 year paleoclimatic simulation with the three-dimensional polythermal ice-sheet model SICOPOLIS. The simulation is driven by a climate history derived from the Vostok ice core and the SPECMAP sea-level record. In a 872 km × 436 km region in western Dronning Maud Land (DML), where a deep ice core is planned for EPICA, new high-resolution ice-thickness data are used to compute an improved bedrock topography and a locally refined numerical grid is applied which extends earlier work (Calov and others, 1998). The computed fields of basal temperature, age and shear deformation, together with the measured accumulation rates, give valuable information for the selection of a drill site suitable for obtaining a high-resolution climate record for the last glacial cycle. Based on these results, a possible drill site at 73°59′ S, 00°00′ E is discussed, for which the computed depth profiles of temperature, age, velocity and shear deformation are presented. The geographic origin of the ice column at this position extends 320 km upstream and therefore does not leave the DML region.


1998 ◽  
Vol 27 ◽  
pp. 333-337 ◽  
Author(s):  
Dome-F Deep Coring Group

The Dome Fuji Project is a comprehensive study of present and past glaeiological/climatological features of the Antarctic ice sheet in east Dronning Maud Land. Field observations on a 100U km traverse route from the coast to Dome Fuji slum changes in various glaciological parameters with surface elevation and distance from the coast. Deep ice-core drilling at Dome Fuji was started in August 1995 and reached a depth of 2503.52 m in December 1996. in situ core analyses revealed 25 visible tephra layers and a number of distinct cloudy bands in the ice.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


1986 ◽  
Vol 8 ◽  
pp. 124-128 ◽  
Author(s):  
N.F. McIntyre

Mapping the topography of the Antarctic ice sheet has confirmed that there is, typically, a decrease in the wavelength and increase in the amplitude of surface undulations with distance from ice divides. This pattern is distorted by converging ice flow in coastal regions and by other variations in subglacial relief, ice velocity, and viscosity. The near-symmetry of undulations indicates the extent of three-dimensional flow over bedrock peaks. Spectral analyses indicate the greater response of the ice sheet to bedrock features with longer wavelengths. This is affected, and in some cases dominated, by the inhomogeneous and non-isothermal nature of the ice sheet.


1997 ◽  
Vol 25 ◽  
pp. 259-268 ◽  
Author(s):  
Mikhail Verbitsky ◽  
Barry Saltzman

A three-dimensional (3-D), high-resolution, non-linearly viscous, non-isothermal ice-sheet model is employed to calculate the “present-day” equilibrium regime of the Antarctic ice sheet and its evolution during the last glacial cycle. The model is augmented by an approximate formula for ice-sheet basal temperature, based on a scaling of the thermodynamic equation for the ice flow. Steady-state solutions for both the shape and extent of the areas of basal melting (or freezing) are shown to be in good agreement with those obtained from the solution of the full 3-D thermodynamic equation. The solution for the basal temperature field of the West Antaretie Siple Coast produces areas at the pressure-melting point separated by strips of frozen-to-bed ice, the structure of which is reminiscent of Ice Streams A–E. This configuration appears to be robust, preserving its features in spite of climatic changes during the last glacial cycle. Ice Stream C seems to be more vulnerable to stagnation, switching to a passive mode at least once during the penultimate interglacial. We conjecture that the peculiarities of local topography determine the unique behavior of Ice Stream C: reduced basal stress and, consequently, relatively weak warming due to internal friction and basal sliding is not able to counteract the advective cooling during the periods of increased snowfall rate.


1984 ◽  
Vol 5 ◽  
pp. 239-239
Author(s):  
N.W. Young ◽  
D. Raynaud ◽  
M. de Angelis ◽  
J.-R. Petit ◽  
C. Lorius

1989 ◽  
Vol 12 ◽  
pp. 16-22 ◽  
Author(s):  
W.F. Budd ◽  
D. Jenssen

A three-dimensional dynamic, thermodynamic ice-sheet model has been developed to simulate the past, present, and future behaviour of the Antarctic ice sheet. The present ice velocities depend on the deep ice temperatures which in turn depend on the past changes of the ice sheet, including surface temperature, accumulation rate, and ice thickness. The basal temperatures are also strongly dependent on the geothermal heat flux. The model has therefore been used to study the effect on the basal temperatures, of changes to the geothermal heat flux, as well as the past changes of surface temperature and accumulation rate based on results obtained from the Vostok deep ice core. The model is also used to compute the distribution of surface velocity required to balance the present accumulation rate and the dynamics velocity based on the stress, temperature, and flow properties of ice, for the internal deformation, plus a component due to ice sliding. These velocities are compared to observed surface velocities in East Antarctica to assess the state of balance and the performance of the dynamics formulation.


2020 ◽  
Author(s):  
Violaine Coulon ◽  
Kevin Bulthuis ◽  
Sainan Sun ◽  
Konstanze Haubner ◽  
Frank Pattyn

<p>The Antarctic ice sheet (AIS) lies on a solid Earth that displays large spatial variations in rheological properties, with a thin lithosphere and low-viscosity upper mantle (weak Earth structure) beneath West Antarctica and an opposing structure beneath East Antarctica. This contrast is known to have a significant impact on ice-sheet grounding-line stability. Here, we embedded a modified glacial-isostatic ELRA model within an Antarctic ice sheet model that considers a weak Earth structure for West Antarctica supplemented with an approximation of gravitationally-consistent local sea-level changes. By taking advantage of the computational efficiency of this elementary GIA model, we assess in a probabilistic way the impact of uncertainties in the Antarctic viscoelastic properties on the response of the Antarctic ice sheet to future warming by using an ensemble of 2000 Monte Carlo simulations that span a range of plausible solid Earth structures for both West and East Antarctica. <br>We show that on multicentennial-to-millennial timescales, model projections that do not consider the dichotomy between East and West Antarctic solid Earth structures systematically overestimate the sea-level contribution from the Antarctic ice sheet because regional solid-Earth deformation plays a significant role in promoting the stability of the West Antarctic ice sheet (WAIS). However, WAIS collapse cannot be prevented under high-emissions climate scenarios. At longer timescales and under unabated climate forcing, future mass loss may be underestimated because in East Antarctica, GIA feedbacks have the potential to re-enforce the influence of the climate forcing as compared with a spatially-uniform GIA model. In this context, the AIS response might be an even larger source of uncertainty in projecting sea-level rise than previously thought, with the highest uncertainty arising from the East Antarctic ice sheet where the Aurora Basin is very GIA-dependent.</p>


1988 ◽  
Vol 11 ◽  
pp. 32-35 ◽  
Author(s):  
Klaus Herterich

A preliminary version of a three-dimensional ice-sheet model for later use in climate models, but excluding ice shelves and basal sliding, is presented and applied to the Antarctic ice sheet. In the model, the three-dimensional fields of velocity and temperature are calculated in the coupled mode, and the temperature equation is integrated for 150 000 years; the shape of the Antarctic ice sheet remains fixed. The results from the model are consistent with a stationary state in the central parts of the Antarctic ice sheet, but not in marginal areas, where the flow in the model is too small. Including a parameterized form of basal sliding that is dependent on the water pressure is likely to improve the situation.


Sign in / Sign up

Export Citation Format

Share Document