scholarly journals Rapid sea-level rise from a West Antarctic ice-sheet collapse: a short-term perspective

1998 ◽  
Vol 44 (146) ◽  
pp. 157-163
Author(s):  
Charles R. Bentley

AbstractWill worldwide sea level soon rise rapidly because of a shrinkage of the West Antarctic ice sheet (WAIS)? Here I give a personal perspective of that probability. The crucial question is not whether large changes in ice mass can occur, but how likely it is that a large, rapid change, say a several-fold increase in the 20th-century rate of about 2 mm a-1, will occur in the next century or two from a West Antarctic cause.Twenty years ago Weertman proposed that a marine ice sheet is inherently unstable. But Weertman’s analysis was based on a simple model of a marine ice sheet that did not include fast-flowing, wet-based ice streams, which are now known to dominate the grounded ice sheet. Modern analyses do not definitively determine just how ice streams affect the stability of the WAIS, but it can at least be said that there is no compelling theoretical reason to expect a rapid rise in sea level from the WAIS triggered by ice-shelf thinning.Of the three main ice-drainage systems in the WAIS, the one that flows into Pine Island Bay might be a particularly likely site for accelerated flow since there is no ice shelf to restrain the inflowing ice streams, yet measurements show that this system is not significantly out of mass balance. If the “Ross Embayment” system, which has undergone several sudden glacial reorganizations in the last thousand years, were unstable one might expect a history of large changes in the total outflow of ice into the Ross Ice Shelf, yet the total outflow in the “Ross Embayment” has remained relatively unchanged despite the large internal perturbations, a fact that, points to a stable, not an unstable, system. Study of the third major drainage from the WAIS, into the Ronne Ice Shelf, also suggests that there is no gross discordance between the present velocity vectors and flow tracers in the ice shelf, although the evidence is limited.In the light of the evidence for recent stability, it is difficult to see how climate warming (whether anthropogenic or natural) could trigger a collapse of the WAIS in the next century or two. Thus, I believe that a rapid rise in sea level in the next century or two from a West Antarctic cause could only occur if a natural (not induced) collapse of the WAIS were imminent. Based on a concept of pseudo-random collapse once per major glacial cycle, I estimate the chances of that to be on the order of one in a thousand.

1998 ◽  
Vol 44 (146) ◽  
pp. 157-163 ◽  
Author(s):  
Charles R. Bentley

Abstract Will worldwide sea level soon rise rapidly because of a shrinkage of the West Antarctic ice sheet (WAIS)? Here I give a personal perspective of that probability. The crucial question is not whether large changes in ice mass can occur, but how likely it is that a large, rapid change, say a several-fold increase in the 20th-century rate of about 2 mm a-1, will occur in the next century or two from a West Antarctic cause. Twenty years ago Weertman proposed that a marine ice sheet is inherently unstable. But Weertman’s analysis was based on a simple model of a marine ice sheet that did not include fast-flowing, wet-based ice streams, which are now known to dominate the grounded ice sheet. Modern analyses do not definitively determine just how ice streams affect the stability of the WAIS, but it can at least be said that there is no compelling theoretical reason to expect a rapid rise in sea level from the WAIS triggered by ice-shelf thinning. Of the three main ice-drainage systems in the WAIS, the one that flows into Pine Island Bay might be a particularly likely site for accelerated flow since there is no ice shelf to restrain the inflowing ice streams, yet measurements show that this system is not significantly out of mass balance. If the “Ross Embayment” system, which has undergone several sudden glacial reorganizations in the last thousand years, were unstable one might expect a history of large changes in the total outflow of ice into the Ross Ice Shelf, yet the total outflow in the “Ross Embayment” has remained relatively unchanged despite the large internal perturbations, a fact that, points to a stable, not an unstable, system. Study of the third major drainage from the WAIS, into the Ronne Ice Shelf, also suggests that there is no gross discordance between the present velocity vectors and flow tracers in the ice shelf, although the evidence is limited. In the light of the evidence for recent stability, it is difficult to see how climate warming (whether anthropogenic or natural) could trigger a collapse of the WAIS in the next century or two. Thus, I believe that a rapid rise in sea level in the next century or two from a West Antarctic cause could only occur if a natural (not induced) collapse of the WAIS were imminent. Based on a concept of pseudo-random collapse once per major glacial cycle, I estimate the chances of that to be on the order of one in a thousand.


1978 ◽  
Vol 10 (2) ◽  
pp. 150-170 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (∼15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr−1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr−1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2020 ◽  
Vol 66 (260) ◽  
pp. 891-904 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn ◽  
Erika G. Simon ◽  
Torsten Albrecht ◽  
Stephen Cornford ◽  
...  

AbstractAntarctica's ice shelves modulate the grounded ice flow, and weakening of ice shelves due to climate forcing will decrease their ‘buttressing’ effect, causing a response in the grounded ice. While the processes governing ice-shelf weakening are complex, uncertainties in the response of the grounded ice sheet are also difficult to assess. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) compares ice-sheet model responses to decrease in buttressing by investigating the ‘end-member’ scenario of total and sustained loss of ice shelves. Although unrealistic, this scenario enables gauging the sensitivity of an ensemble of 15 ice-sheet models to a total loss of buttressing, hence exhibiting the full potential of marine ice-sheet instability. All models predict that this scenario leads to multi-metre (1–12 m) sea-level rise over 500 years from present day. West Antarctic ice sheet collapse alone leads to a 1.91–5.08 m sea-level rise due to the marine ice-sheet instability. Mass loss rates are a strong function of the sliding/friction law, with plastic laws cause a further destabilization of the Aurora and Wilkes Subglacial Basins, East Antarctica. Improvements to marine ice-sheet models have greatly reduced variability between modelled ice-sheet responses to extreme ice-shelf loss, e.g. compared to the SeaRISE assessments.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf untilc. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2021 ◽  
Author(s):  
Tanja Schlemm ◽  
Johannes Feldmann ◽  
Ricarda Winkelmann ◽  
Anders Levermann

Abstract. Due to global warming and particularly high regional ocean warming, both Thwaites and Pine Island glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyze the possible consequences using the Parallel Ice Sheet Model (PISM), applying a simple cliff-calving parameterization and an ice-mélange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding line retreat and triggers the marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyze the marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constraint parameter which determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound on the calving rate which is given by the ice mélange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Since the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-mélange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.


1982 ◽  
Vol 3 ◽  
pp. 316-320 ◽  
Author(s):  
J. Weertman ◽  
G. E. Birchfield

An analysis is made of the steady-state width of an ice sheet whose base is below sea-level, whose basal temperatures are such that appreciable melting occurs at the base, and which is fringed by fastmoving ice streams that drain most of the outward ice flux. The fast ice velocities of the ice streams are considered to be a consequence of substantial subglacial water flow underneath the ice streams. The source of this water is the water melted from the base of the ice sheet which is diverted to flow beneath the ice streams. If the depth of the sea at the edge of the ice sheet is not a function of the width of the ice sheet, then an ice sheet with a steady-state width is in a situation of unstable equilibrium. Only if the sea-level depth at the edge of the ice sheet increases as a function of ice-sheet width at a rate greater than the 2/3rd power of the width can a stable, steady-state ice sheet exist. This condition (taking into account elastic rebound) is not satisfied for the West Antarctic ice sheet along an ice-flow path from the ice divide above Byrd station out to the Ross Sea. An increase of the mean precipitation, such as might occur under a C02-induced climatic warming, would cause growth of both stable or unstable steady-state ice sheets.


2011 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Katherine Pingree ◽  
Max Lurie ◽  
Terence Hughes

AbstractThe Greenland and East and West Antarctic ice sheets are assessed as being the source of ice that produced an Eemian sea level 6 m higher than present sea level. The most probable source is total collapse of the West Antarctic Ice Sheet accompanied by partial collapse of the adjacent sector of the East Antarctic Ice Sheet in direct contact with the West Antarctic Ice Sheet. This conclusion is reached by applying a simple formula relating the “floating fraction” of ice along flowlines to ice height above the bed. Increasing the floating fraction lowered ice elevations enough to contribute up to 4.7 m to global sea level. Adding 3.3 m resulting from total collapse of the West Antarctic Ice Sheet accounts for the higher Eemian sea level. Partial gravitational collapse that produced the present ice drainage system of Amery Ice Shelf contributes 2.3 m to global sea level. These results cast doubt on the presumed stability of the East Antarctic Ice Sheet, but destabilizing mechanisms remain largely unknown. Possibilities include glacial surges and marine instabilities at the respective head and foot of ice streams.


1982 ◽  
Vol 3 ◽  
pp. 316-320 ◽  
Author(s):  
J. Weertman ◽  
G. E. Birchfield

An analysis is made of the steady-state width of an ice sheet whose base is below sea-level, whose basal temperatures are such that appreciable melting occurs at the base, and which is fringed by fastmoving ice streams that drain most of the outward ice flux. The fast ice velocities of the ice streams are considered to be a consequence of substantial subglacial water flow underneath the ice streams. The source of this water is the water melted from the base of the ice sheet which is diverted to flow beneath the ice streams. If the depth of the sea at the edge of the ice sheet is not a function of the width of the ice sheet, then an ice sheet with a steady-state width is in a situation of unstable equilibrium. Only if the sea-level depth at the edge of the ice sheet increases as a function of ice-sheet width at a rate greater than the 2/3rd power of the width can a stable, steady-state ice sheet exist. This condition (taking into account elastic rebound) is not satisfied for the West Antarctic ice sheet along an ice-flow path from the ice divide above Byrd station out to the Ross Sea. An increase of the mean precipitation, such as might occur under a C02-induced climatic warming, would cause growth of both stable or unstable steady-state ice sheets.


Sign in / Sign up

Export Citation Format

Share Document