scholarly journals Optical Properties of Blowing Snow

1988 ◽  
Vol 34 (116) ◽  
pp. 3-10 ◽  
Author(s):  
J.W. Pomeroy ◽  
D.H. Male

AbstractCalculation procedures are developed and results shown for the exact calculation of extinction and meteorological visual range using the blowing-snow mass in the atmosphere and particle radius. Results of the calculations show: (1) For monochromatic radiation, geometrical optics approximations of the extinction efficiency are found to provide results of only moderate accuracy in calculating the extinction of radiation by a single particle. (2) For broad-band radiation, the geometrical optics approximation is sufficiently accurate for many single-particle measurement instruments and applications, except in the infra-red band where Mie theory should be used. (3) For typical blowing-snow particle-size distributions, the shape parameter of the distribution of particle radii and the mean particle radius are very important in broad-band extinction and visual-range modelling. Estimates of blowing-snow quantities from broad-band extinction measurements or visual range from blowing-snow quantities should address the shape and mean value of the snow-particle radius distribution.

1988 ◽  
Vol 34 (116) ◽  
pp. 3-10 ◽  
Author(s):  
J.W. Pomeroy ◽  
D.H. Male

Abstract Calculation procedures are developed and results shown for the exact calculation of extinction and meteorological visual range using the blowing-snow mass in the atmosphere and particle radius. Results of the calculations show: (1) For monochromatic radiation, geometrical optics approximations of the extinction efficiency are found to provide results of only moderate accuracy in calculating the extinction of radiation by a single particle. (2) For broad-band radiation, the geometrical optics approximation is sufficiently accurate for many single-particle measurement instruments and applications, except in the infra-red band where Mie theory should be used. (3) For typical blowing-snow particle-size distributions, the shape parameter of the distribution of particle radii and the mean particle radius are very important in broad-band extinction and visual-range modelling. Estimates of blowing-snow quantities from broad-band extinction measurements or visual range from blowing-snow quantities should address the shape and mean value of the snow-particle radius distribution.


2017 ◽  
Vol 53 ◽  
pp. 184-195 ◽  
Author(s):  
Jingyan Li ◽  
Tingting Xu ◽  
Xiaohui Lu ◽  
Hong Chen ◽  
Sergey A. Nizkorodov ◽  
...  

1993 ◽  
Vol 18 ◽  
pp. 149-154 ◽  
Author(s):  
Takeshi Sato ◽  
Tadashi Kimura ◽  
Taminoe Ishimaru ◽  
Toshisuke Maruyama

The optical system of the snow-particle counter (SPC), which was developed by Schmidt in 1977, has been improved. A laser diode is used as a light source, achieving uniform sensitivity to a blowing snow particle regardless of the location of particle trajectory within a sampling volume. The light entering a slit, which may be affected by a blowing snow particle, is perfectly detected by use of a piano-cylindrical lens and a dual-type photodiode. A signal processor has been developed to get output voltage proportional to the mass flux of blowing snow.From the estimates based on blowing snow characteristics and wind speed profile, the new SPC system can accurately detect all the particles of effective sizes at least at a height above 0.1 m when the wind speed at a height of 1 m is less than 15 m s−1.Considering the Fraunhofer diffraction by both the wire and the particle, the relation between a particle diameter and sensor output of the new SPC system is derived from the calibration with spinning wires.Mass flux obtained with the new SPC system was found to be close to that with a snow trap. The system was operated continuously for at least nine days using two 35 A h lead batteries.


1978 ◽  
Vol 80 ◽  
pp. 177-182
Author(s):  
R. Canterna ◽  
R. A. Schommer

Photometric metal abundances of individual red giants in eight extremely distant halo globular clusters and the Draco and Ursa Minor dwarf spheroidal galaxies have been obtained using the Washington broad-band system, C, M, T1, T2(Canterna 1976). Observations were made at the KPNO 2.1-m and CTIO 1.5-m telescopes. In Table I we list for each system the mean value of [Fe/H], the number of stars observed in each system, n, the Galactocentric distance, RGC, the intrinsic color of the giant branch at the level of the horizontal branch (HB), (B-V)o,g, and the fraction of HB stars bluer than the RR Lyrae gap, fB. Sources for unpublished color-magnitude diagram (CMD) data are: Pal 11 (Canterna and Schommer), Pal 12 (Canterna and Harris), and Ursa Minor (Schommer, Olszewski and Kunkel).


Sign in / Sign up

Export Citation Format

Share Document