scholarly journals Non-standard Aspects of Fibonacci Type Sequences

KoG ◽  
2017 ◽  
pp. 26-34
Author(s):  
Gunter Weiss

Fibonacci sequence and the limit of the quotient of adjacent Fibonacci numbers, namely the Golden Mean, belong to general knowledge of almost anybody, not only of mathematicians and geometers. There were several attempts to generalize these fundamental concepts which also found applications in art and architecture, as e.g. number series and quadratic equations leading to the so-called ``Metallic means'' by V. de Spinadel [8] or the cubic ``plastic number'' by van der Laan [5] resp. the ``cubi ratio'' by L. Rosenbusch [7]. The mentioned generalisations consider series of integers or real numbers. ``Non-standard aspects'' now mean generalisations with respect to a given number field or ring as well as visualisations of the resulting geometric objects. Another aspect concerns Fibonacci type resp. Padovan type combinations of given start objects. Here it turns out that the concept ``Golden Mean'' or ``van der Laan Mean'' also makes sense for vectors, matrices and mappings.

2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


In this article, we explore the representation of the product of k consecutive Fibonacci numbers as the sum of kth power of Fibonacci numbers. We also present a formula for finding the coefficients of the Fibonacci numbers appearing in this representation. Finally, we extend the idea to the case of generalized Fibonacci sequence and also, we produce another formula for finding the coefficients of Fibonacci numbers appearing in the representation of three consecutive Fibonacci numbers as a particular case. Also, we point out some amazing applications of Fibonacci numbers.


Author(s):  
Ibtissam Talha ◽  
Salim Badidja

In this paper, we deal with the periodicity of solutions of the following general system rational of difference equations: [Formula: see text] where [Formula: see text] [Formula: see text] and the initial conditions are arbitrary nonzero real numbers.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


2014 ◽  
Vol 10 (08) ◽  
pp. 2151-2186 ◽  
Author(s):  
Krishna Dasaratha ◽  
Laure Flapan ◽  
Thomas Garrity ◽  
Chansoo Lee ◽  
Cornelia Mihaila ◽  
...  

Most well-known multidimensional continued fractions, including the Mönkemeyer map and the triangle map, are generated by repeatedly subdividing triangles. This paper constructs a family of multidimensional continued fractions by permuting the vertices of these triangles before and after each subdivision. We obtain an even larger class of multidimensional continued fractions by composing the maps in the family. These include the algorithms of Brun, Parry-Daniels and Güting. We give criteria for when multidimensional continued fractions associate sequences to unique points, which allows us to determine when periodicity of the corresponding multidimensional continued fraction corresponds to pairs of real numbers being cubic irrationals in the same number field.


New Sound ◽  
2017 ◽  
pp. 70-90
Author(s):  
Rima Povilionienè

In the sphere of musical research, the intersection of two seemingly very different subject areas-music and mathematics is in essence related to one of the trends of music-attributing the theory of music to science, to the sphere of mathematica. It is regarded the longest-lasting interdisciplinary dialogue. The implication of numerical proportions and number sequences in the music composition of different epochs is closely related to this sphere. A significant role in creating music was attributed to the so-called infinite Fibonacci sequence. Perhaps the most important feature of the Fibonacci numbers, which attracted the attention of thinkers and creators of different epochs, is the fact that by means of the ratio between them it is possible to come maximally close to the Golden Ratio formula, which expresses the laws of nature. On a practical plane, often the climax, the most important part of any composition, matches the point of the Golden Ratio; groups of notes, rhythm, choice of tone pitches, a grouping of measures, time signature, as well as proportions between a musical composition's parts may be regulated according to Fibonacci principles. The article presents three analytical cases-Chopin's piano prelude, Bourgeois' composition for organ, and Reich's minimalistic piece, attempting to render music composition structure to the logic of Fibonacci numbers.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2912
Author(s):  
Eva Trojovská ◽  
Venkatachalam Kandasamy

Let (Fn)n be the sequence of Fibonacci numbers. The order of appearance (in the Fibonacci sequence) of a positive integer n is defined as z(n)=min{k≥1:n∣Fk}. Very recently, Trojovská and Venkatachalam proved that, for any k≥1, the number z(n) is divisible by 2k, for almost all integers n≥1 (in the sense of natural density). Moreover, they posed a conjecture that implies that the same is true upon replacing 2k by any integer m≥1. In this paper, in particular, we prove this conjecture.


Author(s):  
Vicente Muñoz Velázquez

The Hodge conjecture is one of the seven millennium problems, and is framed within differential geometry and algebraic geometry. It was proposed by William Hodge in 1950 and is currently a stimulus for the development of several theories based on geometry, analysis, and mathematical physics. It proposes a natural condition for the existence of complex submanifolds within a complex manifold. Manifolds are the spaces in which geometric objects can be considered. In complex manifolds, the structure of the space is based on complex numbers, instead of the most intuitive structure of geometry, based on real numbers.


Sign in / Sign up

Export Citation Format

Share Document