scholarly journals Dynamic simulation of industrial-scale gibbsite crystallization circuit

2021 ◽  
Vol 247 ◽  
pp. 88-101
Author(s):  
Vladimir Golubev ◽  
Tatyana Litvinova

Population balance model is crucial for improving the method of aluminum hydroxide massive crystallization and enhancing the quality of control over industrial precipitation trains. This paper presents the updated population balance model, which can be used for simulation of industrial-scale precipitation. Processes of birth-and-spread and particle breakage are considered integral parts of the precipitation process along with secondary nucleation, growth and agglomeration of particles. The conceptual difference of the proposed system of equations is its ability to reproduce the oscillatory process that occurs in precipitation circuits as a result of cyclic changes in the quality of the seed surface. It is demonstrated that self-oscillations can occur in the system without any external influence. The updated model is adjusted and verified using historical industrial data. The simulation of seed-recycle precipitation circuit showed an exact correspondence between the calculated dynamic pattern of changes in particle size distribution of aluminum hydroxide and the actual data.

2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


2001 ◽  
Vol 27 (1) ◽  
pp. 63-71 ◽  
Author(s):  
S Sivakumar ◽  
Manjunath Subbanna ◽  
Satyam S Sahay ◽  
Vijay Ramakrishnan ◽  
P.C Kapur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document