Segmentasi pada Citra Panoramik Gigi dengan Metode Two-Stage SOM dan T-CLUSTER

2014 ◽  
Vol 6 (1) ◽  
pp. 7-13
Author(s):  
Khoirul Umam ◽  
Fidi Wincoko Putro ◽  
Gulpi Qorik Oktagalu Pratamasunu

Segmentation on medical image requires good quality due to affect the interpretation and diagnosis of medical experts. On medical image segmentation, there is merging phase to increase the quality of the segmentation result. However, stopping criteria on merging phase was determined manually by medical experts. It implied the subjectivity of segmentation result. To increase the objectivity of segmentation result, a method to automate merging phase on medical image segmentation is required. Therefore, we propose a novel method on medical image segmentation which combine two-stage SOM and T-cluster method. Experiments were performed on dental panoramic as medical image sample and evaluated by using segmentation quality formula. Experiments show that the proposed method can perform segmentation on dental panoramic image automatically and objectively with the best average of segmentation quality value is 4,40. Index Terms—dental panoramic image, image segmentation, medical image, Self-Organizing Map, T-cluster

2021 ◽  
Author(s):  
Abdulla Al Suman ◽  
Shubham Sarda ◽  
Md. Asikuzzaman ◽  
Alexandra Louise Webb ◽  
M. Perriman Diana ◽  
...  

2019 ◽  
Vol 31 (6) ◽  
pp. 1007 ◽  
Author(s):  
Haiou Wang ◽  
Hui Liu ◽  
Qiang Guo ◽  
Kai Deng ◽  
Caiming Zhang

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 348
Author(s):  
Choongsang Cho ◽  
Young Han Lee ◽  
Jongyoul Park ◽  
Sangkeun Lee

Semantic image segmentation has a wide range of applications. When it comes to medical image segmentation, its accuracy is even more important than those of other areas because the performance gives useful information directly applicable to disease diagnosis, surgical planning, and history monitoring. The state-of-the-art models in medical image segmentation are variants of encoder-decoder architecture, which is called U-Net. To effectively reflect the spatial features in feature maps in encoder-decoder architecture, we propose a spatially adaptive weighting scheme for medical image segmentation. Specifically, the spatial feature is estimated from the feature maps, and the learned weighting parameters are obtained from the computed map, since segmentation results are predicted from the feature map through a convolutional layer. Especially in the proposed networks, the convolutional block for extracting the feature map is replaced with the widely used convolutional frameworks: VGG, ResNet, and Bottleneck Resent structures. In addition, a bilinear up-sampling method replaces the up-convolutional layer to increase the resolution of the feature map. For the performance evaluation of the proposed architecture, we used three data sets covering different medical imaging modalities. Experimental results show that the network with the proposed self-spatial adaptive weighting block based on the ResNet framework gave the highest IoU and DICE scores in the three tasks compared to other methods. In particular, the segmentation network combining the proposed self-spatially adaptive block and ResNet framework recorded the highest 3.01% and 2.89% improvements in IoU and DICE scores, respectively, in the Nerve data set. Therefore, we believe that the proposed scheme can be a useful tool for image segmentation tasks based on the encoder-decoder architecture.


2021 ◽  
Author(s):  
Dachuan Shi ◽  
Ruiyang Liu ◽  
Linmi Tao ◽  
Zuoxiang He ◽  
Li Huo

Sign in / Sign up

Export Citation Format

Share Document