surgical system
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 192)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 7 ◽  
pp. 100145
Author(s):  
Alexandra M Buda ◽  
Paul Truche ◽  
Erick Izquierdo ◽  
Sandra de Izquierdo ◽  
Sabrina Asturias ◽  
...  

2022 ◽  
Vol 52 (1) ◽  
pp. E15

OBJECTIVE The utility of robotic instrumentation is expanding in neurosurgery. Despite this, successful examples of robotic implementation for endoscopic endonasal or skull base neurosurgery remain limited. Therefore, the authors performed a systematic review of the literature to identify all articles that used robotic systems to access the sella or anterior, middle, or posterior cranial fossae. METHODS A systematic review of MEDLINE and PubMed in accordance with PRISMA guidelines performed for articles published between January 1, 1990, and August 1, 2021, was conducted to identify all robotic systems (autonomous, semiautonomous, or surgeon-controlled) used for skull base neurosurgical procedures. Cadaveric and human clinical studies were included. Studies with exclusively otorhinolaryngological applications or using robotic microscopes were excluded. RESULTS A total of 561 studies were identified from the initial search, of which 22 were included following full-text review. Transoral robotic surgery (TORS) using the da Vinci Surgical System was the most widely reported system (4 studies) utilized for skull base and pituitary fossa procedures; additionally, it has been reported for resection of sellar masses in 4 patients. Seven cadaveric studies used the da Vinci Surgical System to access the skull base using alternative, non–TORS approaches (e.g., transnasal, transmaxillary, and supraorbital). Five cadaveric studies investigated alternative systems to access the skull base. Six studies investigated the use of robotic endoscope holders. Advantages to robotic applications in skull base neurosurgery included improved lighting and 3D visualization, replication of more traditional gesture-based movements, and the ability for dexterous movements ordinarily constrained by small operative corridors. Limitations included the size and angulation capacity of the robot, lack of drilling components preventing fully robotic procedures, and cost. Robotic endoscope holders may have been particularly advantageous when the use of a surgical assistant or second surgeon was limited. CONCLUSIONS Robotic skull base neurosurgery has been growing in popularity and feasibility, but significant limitations remain. While robotic systems seem to have allowed for greater maneuverability and 3D visualization, their size and lack of neurosurgery-specific tools have continued to prevent widespread adoption into current practice. The next generation of robotic technologies should prioritize overcoming these limitations.


2022 ◽  
pp. 319-338
Author(s):  
Tamás Dániel Nagy ◽  
Tamás Haidegger

The revolution of minimally invasive procedures had a significant influence on surgical practice, opening the way to laparoscopic surgery, then evolving into robotics surgery. Teleoperated master-slave robots, such as the da Vinci Surgical System, has become a standard of care during the last few decades, performing over a million procedures per year worldwide. Many believe that the next big step in the evolution of surgery is partial automation, which would ease the cognitive load on the surgeon, making them possible to pay more attention on the critical parts of the intervention. Partial and sequential introduction and increase of autonomous capabilities could provide a safe way towards Surgery 4.0. Unfortunately, autonomy in the given environment, consisting mostly of soft organs, suffers from grave difficulties. In this chapter, the current research directions of subtask automation in surgery are to be presented, introducing the recent advances in motion planning, perception, and human-machine interaction, along with the limitations of the task-level autonomy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Daisuke Sano ◽  
Akira Shimizu ◽  
Ichiro Tateya ◽  
Kazunori Fujiwara ◽  
Yo Kishimoto ◽  
...  

As the laryngopharynx is closely related to swallowing, speech, and phonation, it is necessary to consider not only disease control but also a minimally invasive approach for the treatment of laryngopharyngeal cancer. Transoral surgery has been reported to be a minimally invasive method for treating these diseases. Transoral videolaryngoscopic surgery (TOVS) and endoscopic laryngo-pharyngeal surgery (ELPS) have been developed in Japan and recently emerged as treatments for patients with early stage pharyngeal and laryngeal cancers. However, securing an appropriate field of view and a narrow operating space during TOVS or ELPS are critical issues to be resolved for these surgeries. The clinical significance and safety of transoral robotic surgery (TORS) using the da Vinci Surgical System have been widely reported to provide surgeons with increased visualization and magnification, resulting in precise surgical margins and rapid functional recovery. In this context, a multi-institutional clinical study was conducted to evaluate the treatment outcomes of TORS for the treatment of laryngopharyngeal cancer in Japan, and the da Vinci Surgical System for oral robot-assisted surgery for these diseases was approved by the Pharmaceutical Affairs Agency in August 2018. This review provides an overview of the therapeutic effects of TOVS, ELPS, and TORS, with a particular focus on these therapeutic results in Japan.


2021 ◽  
Vol 28 (11) ◽  
pp. S16
Author(s):  
S.Y. Park ◽  
H. Yoo ◽  
E.H. Cho ◽  
J.H. Lee ◽  
K. Jeong ◽  
...  
Keyword(s):  
Da Vinci ◽  

Work ◽  
2021 ◽  
pp. 1-19
Author(s):  
Ida-Märta Rhén ◽  
Xuelong Fan ◽  
Magnus Kjellman ◽  
Mikael Forsman

BACKGROUND: In the 90s, digital human manikins (DHMs) were introduced in planning of workstations, by static or semi-static simulations. Modern DHMs can simulate dynamic work and offer a rapid way for a virtual pre-production ergonomic evaluation. Work-related musculoskeletal disorders may affect surgical performance and patient safety. A prototype of an open console, which is contrary to the conventional closed consoles and may be seen as a representative for a new generation, has been designed to reduce workload for robotic surgery surgeons. OBJECTIVE: The aim of this project was to test a new DHM tool with improved usability to evaluate the ergonomics of console of a robotic surgical system in a pre-production stage. METHODS: The DHM tool IMMA was used together with a 3D model of the prototype console. Twelve manikins who represented females and males from two national populations were introduced. Manikin-console distances, after console adjustments per manikin, were compared with a US checklist and Swedish standards for VDU work. RESULTS: The DHM tool was useful for this case, but the distances of the checklist and the standards were needed to be obtained “manually”. The automatic functions of the DHM worked smoothly but were not optimized for VDU work. The prototype fulfilled most, but not all, of the ergonomic criteria of the checklist and the standards. CONCLUSIONS: There is room for improvements of the adjustable ranges of the console prototype. DHMs may facilitate rapid pre-production evaluation of workstations for static work; if ergonomic assessment models for VDU work are built-in, there may be a revival of DHMs in static work situations.


Author(s):  
CHANGLE LI ◽  
ZEQUN LI ◽  
XUEHE ZHANG ◽  
GANGFENG LIU ◽  
JIE ZHAO

Traditional manual puncture surgery has low positioning accuracy and poor stability. Moreover, the computed tomography method can cause strong radiation damage. Therefore, this study intends to establish a robotic system in puncture surgery, which is based on optical registration to improve safety, accuracy, and efficiency. As the accuracy of surgical space calibration influences the accuracy of the surgical system, this study proposes an improved automatic calibration algorithm for linear rotation. The algorithm can reduce error caused by manual calibration and system noise. Recalibration is not required provided that the pose of the digital reference frame is unchanged, thereby improving accuracy and efficiency. The proposed algorithm is experimentally verified to prove its effectiveness. Results show that the average errors of position and posture are 0.25[Formula: see text]mm and 0.2∘, respectively. The accuracy of calibration fully meets the needs of surgery.


2021 ◽  
Vol 50 (8) ◽  
pp. 102131
Author(s):  
Enrica Bentivegna ◽  
Meriem Koual ◽  
Huyên-Thu Nguyen-Xuan ◽  
Laurent Plait ◽  
Stéphanie Seidler ◽  
...  
Keyword(s):  
Da Vinci ◽  

Sign in / Sign up

Export Citation Format

Share Document