scholarly journals Leveraging budding yeast Saccharomyces cerevisiae for discovering aging modulation substances for functional food

2019 ◽  
Vol 9 (5) ◽  
pp. 297
Author(s):  
Shaoyu Wang

Background: Discovery of bioactive substances contained in functional food and the mechanism of their aging modulation are imperative steps in developing better, potent and safer functional food for promoting health and compression of morbidity in the aging population.  Budding yeast (Saccharomyces cerevisiae) is invaluable model organism for aging modulation and bioactive compounds discovery. In this paper we have conceptualised a framework for achieving such aim. This framework consists of four components: discovering targets for aging modulation, discovering and validating caloric restriction mimetics, acting as cellular systems for screening natural products or compounds for aging modulation and being a biological factory for producing bioactive compounds according to the roles the yeast systems play. It have been argued that the component of being a biological factory for producing bioactive compounds has much underexplored which also present an opportunity for new active substance discovery and validation for health promotion in functional food industry.Keywords: Aging modulation, budding yeast, functional food, bioactive substances, cell factory

2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Renata Zadrag-Tecza ◽  
Mateusz Molon ◽  
Jan Mamczur ◽  
Tomasz Bilinski

The lifespan of budding yeast cells is divided into two stages: reproductive and post-reproductive. The post-reproductive stage of the yeast's lifespan has never been characterized before. We have analyzed the influence of various mutations on the post-reproductive (PRLS) and replicative (RLS) lifespans. The results indicate that PRLS demonstrates an inverse relationship with RLS. The observed lack of differences in the total lifespan (TLS) (expressed in units of time) of strains differing up to five times in RLS (expressed in the number of daughters formed) suggests the necessity of revision of opinions concerning the use of yeast as a model organism of gerontology.


2021 ◽  
Author(s):  
Yanni Sudiyani ◽  
Muhammad Eka Prastya ◽  
Roni Maryana ◽  
Eka Triwahyuni ◽  
Muryanto

Saccharomyces cerevisiae, the budding yeast was long history as industrial baker’s yeast due to its ability to produce numerous product such as ethanol, acetate, industrial bakers etc. Interestingly, this yeast was also important tools for studying biological mechanism in eukaryotic cells including aging, autophagy, mitochondrial response etc. S. cerevisiae has arisen as a powerful chemical and genetic screening platform, due to a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Calorie restriction (CR) as the reduction of nutrients intake could promote yeast longevity through some pathways such as inhibition of nutrient sensing target of rapamycin (TOR), serine–threonine kinase (SCH9), protein adenylate cyclase (AC), protein kinase A (PKA) and ras, reduced ethanol, acetic acid and apoptotic process. In addition, CR also induces the expression of antioxidative proteins, sirtuin2 (Sir2), autophagy and induction of mitochondrial yeast adaptive response. Three methods, spotting test; chronological life span (CLS) and replicative life span (RLS) assays, have been developed to study aging in S. cerevisiae. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery.


Microbiology ◽  
1997 ◽  
Vol 143 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
P. A. Radcliffe ◽  
K. M. Binley ◽  
J. Trevethick ◽  
M. Hall ◽  
P. E. Sudbery

Metallomics ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1257-1263 ◽  
Author(s):  
Yasumitsu Ogra ◽  
Maya Shimizu ◽  
Kazuaki Takahashi ◽  
Yasumi Anan

Organic selenium metabolites of plants and animals such as selenoamino acids and selenosugars are metabolized to selenomethionine in yeast.


Sign in / Sign up

Export Citation Format

Share Document