scholarly journals Forced Vibration Analysis of Laminated Composite Plates under the Action of a Moving Vehicle

2021 ◽  
Vol 16 (59) ◽  
pp. 198-211
Author(s):  
Hossein Abbaszadeh Mobaraki ◽  
Ramazan-Ali Jafari-Talookolaei ◽  
Paolo S. Valvo ◽  
Reza Haghani Dogaheh

This paper provides a finite element analysis of laminated composite plates under the action of a moving vehicle. The vehicle is modeled as a rigid body with four suspension systems, each consisting of a spring-dashpot. Overall, the vehicle possesses three degrees of freedom: vertical, rolling, and pitching motions. The equations of motion of the plate are deduced based on first-order shear deformation theory. Using the Euler-Lagrange equations, the system of coupled equations of motion is extracted and solved by using the Newmark time discretization scheme. The algorithm is validated through the comparison of both the free and forced vibration results provided by the present model and exact or numerical results reported in the literature. The effects are investigated of several system parameters on the dynamic response.  

2010 ◽  
Vol 114 (1157) ◽  
pp. 437-444
Author(s):  
H. Tanriöver ◽  
E. Şenoca

Abstract This paper presents an analytical-numerical methodology for the geometrically nonlinear analysis of laminated composite plates under dynamic loading. The methodology employs Galerkin technique, in which suitable polynomials are chosen as trial functions. In the solution process, Newmark’s scheme for time integration, and modified Newton-Raphson method for the solution of resulting nonlinear equations are used. In the formulation, first order shear deformation theory based on Mindlin’s hypothesis and von Kármán type geometric nonlinearity are considered. The results are compared to that of finite strips, and Chebyshev series published elsewhere. The method is found to determine closely both the displacements and the stresses. A finite element analysis has also been carried out for the validation of the results. The present method can be efficiently and easily applied for the nonlinear transient analysis of laminated composite plates with various boundary conditions.


2021 ◽  
Vol 27 (9) ◽  
pp. 1-19
Author(s):  
Hussein Tawfeeq Yahea ◽  
Wedad Ibraheem Majeed

In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of  motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, orthotropy ratio (E1/E2), aspect ratio (a/b),  thickness ratio (a/h), thermal expansion coefficient ratio (α2/α1), are investigated, which have the same behavior and good agreement when compared with previously published results with maximum discrepancy (0.5%).


2014 ◽  
Vol 709 ◽  
pp. 148-152
Author(s):  
Guo Qing Zhou ◽  
Ji Wang ◽  
Song Xiang

Sinusoidal shear deformation theory is presented to analyze the natural frequencies of simply supported laminated composite plates. The governing differential equations based on sinusoidal theory are solved by a Navier-type analytical method. The present results are compared with the available published results which verify the accuracy of sinusoidal theory.


Author(s):  
Sarada P Parida ◽  
Pankaj C Jena

The strength of the conventional composite plates can be enhanced by the use of additional fillers. These composite plates are often subjected to dynamic loading conditions which necessitate the study of their static and dynamic behavior. In this study, laminated composite plates (LCP) are fabricated by open layup process with epoxy as a base resin, E-glass fiber as reinforcement, and fillers: flyash and graphene. The fillers are included in order to improve the mechanical properties of the composite. The filler content in the composite is limited to 5% of the total volume. The weight percentage of fiber combined with fillers, treated as reinforcing constituents is limited to 60%. Graphene and flyash are added in different proportions to develop different kinds of LCPs. The free and forced vibrations of LCPs (using simple support end conditions) are measured by an indigenously developed low-cost vibration testing module. The experimental results have been used to validate the results obtained from the mathematical modeling by using fifth-order shear deformation theory and finite element approaches. Additionally, the effect of existing discontinuity in the LCP is studied. Circular holes of different dimensions at different locations are simulated in the numerical model and the consequences on modal frequencies are analyzed.


Sign in / Sign up

Export Citation Format

Share Document