Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior

2021 ◽  
Vol 121 (2) ◽  
pp. 125-157
Author(s):  
S. Antontsev ◽  
H.B. de Oliveira ◽  
Kh. Khompysh

A nonlinear initial and boundary-value problem for the Kelvin–Voigt equations with anisotropic diffusion, relaxation and absorption/damping terms is considered in this work. The global and local unique solvability of the problem was established in (J. Math. Anal. Appl. 473(2) (2019) 1122–1154). In the present work, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients should interact with the problem data for the solutions of this problem display exponential and polynomial time-decays. We also establish the conditions for the solutions of this problem to blow-up in a finite time in three different cases: problem without convection, full anisotropic problem, and the problem with isotropic relaxation.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yanan Zhou ◽  
Yan Leng ◽  
Yuanyuan Nie

AbstractIn this paper, we establish the Fujita type theorem for a homogeneous Neumann outer problem of the coupled quasilinear convection–diffusion equations and formulate the critical Fujita exponent. Besides, the influence of diffusion term, reaction term, and convection term on the global existence and the blow-up property of the problem is revealed. Finally, we discuss the large time behavior of the solution to the outer problem in the critical case and describe the asymptotic behavior of the solution.


2021 ◽  
Vol 10 (1) ◽  
pp. 1235-1254
Author(s):  
Qiang Tao ◽  
Canze Zhu

Abstract This paper deals with a Cauchy problem of the full compressible Hall-magnetohydrodynamic flows. We establish the existence and uniqueness of global solution, provided that the initial energy is suitably small but the initial temperature allows large oscillations. In addition, the large time behavior of the global solution is obtained.


2008 ◽  
Vol 15 (3) ◽  
pp. 531-539
Author(s):  
Temur Jangveladze ◽  
Zurab Kiguradze

Abstract Large time behavior of solutions to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. The rate of convergence is given, too. Dirichlet boundary conditions with homogeneous data are considered.


Sign in / Sign up

Export Citation Format

Share Document