scholarly journals Navigation Signal Design and Ranging Performance Evaluation of Cn Band Based on Satellite-to-Ground Link

Author(s):  
Xiaofei Chen ◽  
Xue Wang ◽  
Xiaochun Lu ◽  
Jing Ke ◽  
Xia Guo

As the only priority frequency band for navigation services except L protected by ITU, the Cn band could provide navigation services to solve problems of spectrum congestion and vulnerability to interference faced in L using global navigation satellite systems. However, Cn band navigation still faces some problems such as limited-bandwidth and link uncertainty. To solve these problems, an orthogonal MSK signal is designed in this paper under Cn limited bandwidth constraint. The analysis results show that although it’s ranging performance of narrow correlation spacing has been deteriorated, the performance of wide correlation spacing has been improved, and it can reduce 98.7% power interference to adjacent radio astronomy band. On the other hand, the Cn band navigation signal test based on the satellite-to-ground link is carried out in this paper. The test results show that the trend of designed signals’ ranging performance is consistent with the simulation results and its rain attenuation is 0.5–1dB.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Liu ◽  
Yongxin Feng

A new inhibition side peak acquisition (ISPA) algorithm is proposed for binary offset carrier (BOC) modulated signals, which will be utilized in global navigation satellite systems (GNSS). We eliminate all side peaks of the BOC correlation function (CF) by structuring special sequences composed of PRN code and cycle rectangular sequences. The new algorithm can be applied to both generic sine- and cosine-phased BOC signals, as well as to all modulation orders. Theoretical and simulation results demonstrate that the new algorithm can completely eliminate the ambiguity threat in the acquisition process, and it can adapt to lower SNR. In addition, this algorithm is better than the traditional algorithms in acquisition performance and inhibition side peak ability.



2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Khaled Rouabah ◽  
Djamel Chikouche

We propose an efficient method for the detection of Line of Sight (LOS) and Multipath (MP) signals in global navigation satellite systems (GNSSs) which is based on the use of virtual MP mitigation (VMM) technique. By using the proposed method, the MP signals' delay and coefficient amplitudes can be efficiently estimated. According to the computer simulation results, it is obvious that our proposed method is a solution for obtaining high performance in the estimation and mitigation of MP signals and thus it results in a high accuracy in GNSS positioning.



Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3919 ◽  
Author(s):  
Lei Wang ◽  
Ruizhi Chen ◽  
Deren Li ◽  
Guo Zhang ◽  
Xin Shen ◽  
...  

A low Earth orbiter (LEO)-based navigation signal augmentation system is considered as a complementary of current global navigation satellite systems (GNSS), which can accelerate precise positioning convergence, strengthen the signal power, and improve signal quality. Wuhan University is dedicated to LEO-based navigation signal augmentation research and launched one scientific experimental satellite named Luojia-1A. The satellite is capable of broadcasting dual-frequency band ranging signals over China. The initial performance of the Luojia-1A satellite navigation augmentation system is assessed in this study. The ground tests indicate that the phase noise of the oscillator is sufficiently low to support the intended applications. The field ranging tests achieve 2.6 m and 0.013 m ranging precision for the pseudorange and carrier phase measurements, respectively. The in-orbit test shows that the internal precision of the ephemeris is approximate 0.1 m and the clock stability is 3 × 10−10. The pseudorange and carrier phase measurement noise evaluated from the geometry-free combination is about 3.3 m and 1.8 cm. Overall, the Luojia-1A navigation augmentation system is capable of providing useable LEO navigation augmentation signals with the empirical user equivalent ranging error (UERE) no worse than 3.6 m, which can be integrated with existing GNSS to improve the real-time navigation performance.



2018 ◽  
Vol 7 (4.38) ◽  
pp. 1205
Author(s):  
Vladimir Petrovich Pashintsev ◽  
Igor Anatolyevich Kalmykov ◽  
Aleksandr Pavlovich Zhuk ◽  
Dmitrii Viktorovich Orel ◽  
Elena Pavlovna Zhuk

Increased number of threats to user interface of navigation signals, mainly in the form of suppression of navigation signals by jamming as well as navigation signal spoofing by false signals, assumes development of counter measures including improvement of structure security of navigation signals on the basis of stochastic use of code sequences which are ranging codes. This article proves the required number of unique discrete code sequences which can improve structure security of navigation signal in global navigation satellite system upon their stochastic use. Properties of discrete quasi-orthogonal code sequences are estimated which are used and proposed for use in global navigation satellite systems with channel code division, they are compared with optimum values of code balancing, number of element series and lower bounds of maximum lateral peaks of aperiodic auto-correlation function and maximum peaks of aperiodic mutual-correlation function. The experimental results show that the minimum values of the considered correlation functions of discrete quasi-orthogonal code sequences of known global navigation satellite systems exceed the lower bound by 3–6 times. The performances of code balancing and element series of discrete quasi-orthogonal code sequences of the known global navigation satellite systems satisfy in average the allowable intervals. The number of source lines of discrete quasi-orthogonal code sequences of the known global navigation satellite systems is significantly lower than their umber required for improvement of structure security of navigation signal based on their stochastic use. On the basis of the revealed drawbacks of the known discrete quasi-orthogonal code sequences, the necessity to develop new methods is substantiated allowing to obtain their required number together with statistic properties comparable with the best values of discrete quasi-orthogonal code sequences applied as navigation signals in global navigation satellite systems.  



GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Xiaolong Mi ◽  
Chuanzhen Sheng ◽  
Ahmed El-Mowafy ◽  
Baocheng Zhang

AbstractIt is foreseeable that the BeiDou navigation satellite system with global coverage (BDS-3) and the BeiDou navigation satellite (regional) system (BDS-2) will coexist in the next decade. Care should be taken to minimize the adverse impact of the receiver-related biases, including inter-system biases (ISBs), differential code biases (DCB), and differential phase biases (DPB) on the positioning, navigation, and timing (PNT) provided by global navigation satellite systems (GNSS). Therefore, it is important to ascertain the intrinsic characteristics of receiver-related biases, especially in the context of the combination of BDS-3 and BDS-2, which have some differences in their signal level. We present a method that enables time-wise retrieval of between-receiver ISBs, DCB, and DPB from multi-frequency multi-GNSS observations. With this method, the time-wise estimates of the receiver-related biases between BDS-3 and BDS-2 are determined using all five frequencies available in different receiver pairs. Three major findings are suggested based on our test results. First, code ISBs are significant on the two overlapping frequencies B1II and B2b/B2I between BDS-3 and BDS-2 for a baseline with non-identical receiver pairs, which disrupts the compatibility of the two constellations. Second, epoch-wise DCB estimates of the same type in BDS-3 and BDS-2 can show noticeable differences. Thus, it is unreasonable to treat them as one constellation in PNT applications. Third, the DPB of BDS-3 and BDS-2 may have significant short-term variations, which can be attributed to, on the one hand, receivers composing baselines, and on the other hand, frequencies.



Author(s):  
M. O. Ehigiator

Geophysical investigation was conducted at Okada community in ovia North Local Govertment area of Edo state to determine the prospect of aquifer zone. The Petrozenith PZ-02 Terrameter, one of the Electrical Resistivity Equipment was used to conduct a Vertical Electrical Sounding (VES) in the study area. The Garmin Etrex 10 Global Navigation satellite systems (GNSS) was used to acquire Geodetic coordinates of point where VES observations were made. This research was carried out as a pre-drilling Hydro-geophysical survey conducted for the purpose of surveying and studying the proposed water borehole site at Okada Community that has suffered acute water problems for a very long time. There have been series of boreholes drilled in the studied area but all are dry wells. This survey was conducted to investigate the subsurface complexity of the sites in respect of lithology and to recommend the total drill depth based on the prospective aquifer unit so identified. Result of interpretation suggests that the area is underlain with substantive aquiferous formation but at a depth not exceeding 121.60 m (398.95 ft), which is the lower aquifer unit. The value of elevation at point of observation referenced to mean sea level is 94 m.



Sign in / Sign up

Export Citation Format

Share Document