carrier phase measurement
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

4
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Sridhar Anandakrishnan ◽  
Sven G. Bilén ◽  
Julio V. Urbina ◽  
Randall G. Bock ◽  
Peter G. Burkett ◽  
...  

The geoPebble system is a network of wirelessly interconnected seismic and GPS sensor nodes with geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, as well as mountain glaciers. We describe our design methodology, which has enabled us to develop these state-of-the art units using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble node is a self-contained, wirelessly connected sensor for collecting seismic activity and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital converter that can sample incoming seismic signals up to 10 kHz. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebble nodes within a radius of a few kilometers). Each geoPebble includes 32 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers, and temperature). The geoPebble system has been successfully validated in the field in Antarctica and Greenland.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6930
Author(s):  
Chenyao Xiong ◽  
Qingsong Li ◽  
Dingjie Wang ◽  
Jie Wu

Appropriate cycle-slip and measurement-error models are essential for BeiDou carrier-phase-based integrity risk calculation. To establish the receiver’s measurement-error model, an accurate position reference of the GNSS antenna is fundamental for calculating the measurement error. However, it is still a challenge to acquire position references for dynamic BeiDou receivers, resulting in improper GNSS measurement-error models and unreliable integrity monitoring. This paper proposes an improved precise relative positioning scheme by adopting multi-antenna trajectory constraints for dynamic BeiDou receivers. The dynamic experiments show an obvious decline of 78.7%, at most, in the positioning failure rate of the proposed method, as compared with the traditional method. The position solutions obtained from the proposed approach are used as the reference to analyze the cycle-slip and measurement-error characteristics of the dynamic receiver. The field test results indicate that the cycle-slip rate decreases with the increase of signal-to-noise ratio (SNR), and cycle slipping obeys a positively skewed distribution that could be fitted by the Gaussian mixture model (GMM). On the other hand, the standard deviation of the carrier-phase measurement error is inversely proportional to SNR, and its distribution is characteristically fat-tailed, which could be fitted by the bi-normal model.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6731
Author(s):  
Zhenyu Zhang ◽  
Shaoli Kang ◽  
Xiang Zhang

Carrier phase measurement is a ranging technique that uses the receiver to determine the phase difference between the received signal and the transmitted signal. Carrier phase ranging has a high resolution; thus, it is an important research direction for high precision positioning. It is widely used in global navigation satellite systems (GNSS) systems but is not yet commonly used inwireless orthogonal frequency division multiplex (OFDM) systems. Applying carrier phase technology to OFDM systems can significantly improve positioning accuracy. Like GNSS carrier phase positioning, using the OFDM carrier phase for positioning has the following two problems. First, multipath and non-line-of-sight (NLOS) propagation have severe effects on carrier phase measurements. Secondly, ambiguity resolution is also a primary issue in the carrier phase positioning. This paper presents a ranging scheme based on the carrier phase in a multipath environment. Moreover, an algorithm based on the extended Kalman filter (EKF) is developed for fast integer ambiguity resolution and NLOS error mitigation. The simulation results show that the EKF algorithm proposed in this paper solves the integer ambiguity quickly. Further, the high-resolution carrier phase measurements combined with the accurately estimated integer ambiguity lead to less than 30-centimeter positioning error for 90% of the terminals. In conclusion, the presented methods gain excellent performance, even when NLOS error occur.


2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Bingbing Duan ◽  
Urs Hugentobler ◽  
Inga Selmke ◽  
Ningbo Wang

AbstractAmbiguity resolution of a single receiver is becoming more and more popular for precise GNSS (Global Navigation Satellite System) applications. To serve such an approach, dedicated satellite orbit, clock and bias products are needed. However, we need to be sure whether products based on specific frequencies and signals can be used when processing measurements of other frequencies and signals. For instance, for Galileo E5a frequency, some receivers track only the pilot signal (C5Q) while some track only the pilot-data signal (C5X). We cannot compute the differences between C5Q and C5X directly since these two signals are not tracked concurrently by any common receiver. As code measurements contribute equally as phase in the Melbourne-Wuebbena (MelWub) linear combination it is important to investigate whether C5Q and C5X can be mixed in a network to compute a common satellite MelWub bias product. By forming two network clusters tracking Q and X signals, respectively, we confirm that GPS C5Q and C5X signals cannot be mixed together. Because the bias differences between GPS C5Q and C5X can be more than half of one wide-lane cycle. Whereas, mixing of C5Q and C5X signals for Galileo satellites is possible. The RMS of satellite MelWub bias differences between Q and X cluster is about 0.01 wide-lane cycles for both E1/E5a and E1/E5b frequencies. Furthermore, we develop procedures to compute satellite integer clock and narrow-lane bias products using individual dual-frequency types. Same as the finding from previous studies, GPS satellite clock differences between L1/L2 and L1/L5 estimates exist and show a periodical behavior, with a peak-to-peak amplitude of 0.7 ns after removing the daily mean difference of each satellite. For Galileo satellites, the maximum clock difference between E1/E5a and E1/E5b estimates after removing the mean value is 0.04 ns and the mean RMS of differences is 0.015 ns. This is at the same level as the noise of the carrier phase measurement in the ionosphere-free linear combination. Finally, we introduce all the estimated GPS and Galileo satellite products into PPP-AR (precise point positioning, ambiguity resolution) and Sentinel-3A satellite orbit determination. Ambiguity fixed solutions show clear improvement over float solutions. The repeatability of five ground-station coordinates show an improvement of more than 30% in the east direction when using both GPS and Galileo products. The Sentinel-3A satellite tracks only GPS L1/L2 measurements. The standard deviation (STD) of satellite laser ranging (SLR) residuals is reduced by about 10% when fixing ambiguity parameters to integer values.


2019 ◽  
Vol 8 (3) ◽  
pp. 1685-1688

Indian has been established its regional navigational satellite system i.e., IRNSS (Indian space research navigation satellite system). It is launched successfully with seven satellites. It provide accurate position to user in Indian and up to 1500km around the India. In this paper, calculated the integer ambiguity (N) which is one of the parameter of the carrier phase measurement. Carrier phase measurement is measure the range between the satellite and receiver expressed units of cycle of the carrier frequency.


2019 ◽  
Vol 11 (16) ◽  
pp. 1849 ◽  
Author(s):  
Deokhwa Han ◽  
Donguk Kim ◽  
Junesol Song ◽  
Changdon Kee

Regional augmentation systems for a global navigation satellite system (GNSS) provide an ionospheric map correction to the user in order to remove the ionospheric delay error. Measurements are collected from multiple reference stations to estimate the ionospheric map. During this process, the pseudorange measurement error of a reference station causes an error in the correction, which is more evident at edge areas and causes a large error for low-elevation satellites. In this study, an ionospheric modeling algorithm was developed that uses the carrier phase with the pseudorange to greatly reduce the error. The integer-resolved double-difference carrier phase can be obtained through ambiguity resolution method, and the measurement is directly utilized in ionospheric modeling. The performance of the developed method was tested in simulations and with real data for validation. The results of users at various locations showed that the method effectively improved the accuracy of the correction.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3084 ◽  
Author(s):  
Jungbeom Kim ◽  
Younsil Kim ◽  
Junesol Song ◽  
Donguk Kim ◽  
Minhuck Park ◽  
...  

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS. The results of a dynamic simulation and an experiment conducted to verify the efficacy of the proposed system indicate that it can achieve performance improvements of up to 70% and 60%, respectively, compared to the conventional algorithm.


Sign in / Sign up

Export Citation Format

Share Document